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Abstract

The Free Linguistic Environment (FLE) project focuses on the develop-
ment of an open and free library of natural language processing functions and
a grammar engineering platform for Lexical Functional Grammar (LFG) and
related grammar frameworks. In its present state the code-base of FLE con-
tains basic essential elements for LFG-parsing. It uses finite-state-based mor-
phological analyzers and syntactic unification parsers to generate parse-trees
and related functional representations for input sentences based on a gram-
mar. It can process a variety of grammar formalisms, which can be used
independently or serve as backbones for the LFG parser. Among the sup-
ported formalisms are Context-free Grammars (CFG), Probabilistic Context-
free Grammars (PCFG), and all formal grammar components of the XLE-
grammar formalism. The current implementation of the LFG-parser includes
the possibility to use a PCFG backbone to model probabilistic c-structures.
It also includes f-structure representations that allow for the specification or
calculation of probabilities for complete f-structure representations, as well
as for sub-paths in f-structure trees. Given these design features, FLE en-
ables various forms of probabilistic modeling of c-structures and f-structures
for input or output sentences that go beyond the capabilities of other tech-
nologies based on the LFG framework.

1 Introduction

Our main motivation to launch the FLE project was to get access to a free and
open parser environment for research and educational purposes. It aims to develop
a grammar engineering platform for Lexical-Functional Grammar (LFG) (Kaplan
& Bresnan, 1982; Bresnan, 2001; Dalrymple, 2001) and related grammar frame-
works. The long-term goal is to create an open and platform-independent sys-
tem that facilitates the testing of algorithms and formal extensions of the LFG
framework. Among others, our interests are to merge current technologies and ap-
proaches in Natural Language Processing (NLP) with an LFG parser environment,
and to integrate semantic analysis in the resulting computational environment.

The FLE project is motivated by a variety of concerns. One is to experiment
with new algorithms within the LFG framework that can facilitate probabilistic
modeling, as suggested in Kaplan (1996) and elsewhere.1 The FLE environment
should make it possible to experiment with probabilistic models and extensions
to the classical LFG framework, as described below. Consequently, probabilistic
LFG models would allow us to extend the spectrum of application in NLP and
HLT, to address new research questions, and to boost grammar development and
engineering using machine learning strategies and treebanks.

†We are grateful to Ron Kaplan, Ken Beesley, Lionel Clément, Larry Moss, Mary Dalrymple,
Agnieszka Patujek, Adam Przepiórkowski, Paul Meurer, Helge Dyvik, Annie Zaennen, Valeria de
Paiva for many helpful suggestions, data sets, grammar samples, ideas, and comments.

1While a reviewer pointed out that there are many approaches to quantitative LFG, to our knowl-
edge there is no parser platform that implements probabilistic c-structure and f-structure generation
or processing.
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Besides providing an environment to test different algorithms and approaches
to parsing natural language sentences with LFG-based grammars, one purpose of
the project is to create a grammar engineering platform that integrates better in
common operating systems and computing environments.

For language documentation projects, in particular work on under-resourced
and endangered languages, we need a platform that is not only usable on tablets
and mobile thin-computers like Chromebooks, but also one that is easy to use for
grammar engineers without strong technological skills.

While we see a need for a parser and grammar engineering environment that
provide help to documentary linguists and grammar writers, we also see a need
for efficient implementations that are scalable, parallelized and distributed. This
might have been a major concern by many parser developers in the past. Given the
ongoing changes in computing hardware, infrastructure, and environments, it is a
permanent challenge to constantly adapt algorithms and code to be able to benefit
from ongoing innovations. By providing a library of atomic functions, we hope to
create an architecture that we, and others, can subsequently optimize with respect
to these goals.

Our ultimate goal is to integrate semantic processing and computational com-
ponents in some future version of the library and the resulting parsers.

2 Existing LFG Grammar Engineering Platforms

There are various grammar engineering platforms on the market. In the following
we will concentrate only on the LFG related platforms and component software
environments that could benefit from those.

The Xerox Linguistic Environment (XLE) is the most significant and complete
implementation of the LFG framework in a grammar engineering environment. It
is accompanied by a large amount of documentation in form of textbook sections
(e.g. Butt et al. (1999)), online documents (e.g. Crouch et al. (2011)), and academic
publications (e.g. Maxwell & Kaplan (1996a)).

The FLE-project aims at reaching compatibility with XLE. XLE is not freely
available. This prevents us from studying and teaching the particular algorithms
related to LFG-parsing. The graphical environment of XLE has a rather vintage
appearance with limited grammar engineering functionalities. It is available for
Unix-based and – in an older version also – for Windows operating systems.

Another LFG-based grammar engineering environment is XLFG (Clément,
2016; Clément & Kinyon, 2001). It comes as a web-based platform that can be
used in a browser window. It is not openly available and it is accompanied by only
sparse documentation. We have been discussing the possibility of integrating the
grammar formalism supported by XLFG in the FLE environment.

There is a growing number of environments that are used for the application of
NLP components, for example, tokenizers, parsers, named entity recognizers, etc.
However, none of these, to our knowledge, has integrated LFG parsers.
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The Unstructured Information Management Architecture (UIMA) (Ferrucci &
Lally, 2004), for example, is a component software architecture that allows speech
and language processing engineers to define a processing pipeline of NLP com-
ponents for the analysis of data sets (e.g. texts or even audio recordings), and the
aggregation and visualization of analysis results. All FLE components can be used
within an UIMA-based application, if the necessary wrappers for the UIMA infras-
tructure are provided.

The General Architecture for Text Engineering (GATE) (The GATE Team,
2011) is another such environment that is not geared towards the engineering of
morphologies, LFG-based grammars, or specific NLP components, but rather to-
wards the application of such components on some textual data. The integration of
FLE components in the GATE environment is possible.

Existing educational and experimental environments for NLP, like the Natural
Language Toolkit (NLTK) (Loper & Bird, 2002; Bird et al., 2009) provide various
algorithms and tools implemented in the Python programming language. There is
no LFG parser or adequate morphological analyzer integrated in NLTK yet. NLTK
components are coded in Python and not necessarily tuned for efficiency and use
with large data sets. The NLTK license also excludes commercial use and thus
significantly differs from the FLE license. It is possible, though, to create an FLE-
module for Python that uses the compiled C++ classes that are part of FLE.

3 Architecture

While the development of FLE focuses on providing a collection of algorithms
necessary to read LFG formalisms and parse with them, we do implement exper-
imental parser pipelines or fragments of those to test our algorithms. Currently,
there is one experimental setting and implementation of FLE that uses a pipeline
architecture for processing which consumes an input sentence, tokenizes it, and
syntactically parses it on the basis of morphological analyses of the lexical items
using different kinds of chart parser implementations:

Input Sentence → Tokenizer → Morphological Analyzer →
Syntactic Parser → c-structure & f-structure

As discussed in the next subsections, this is a very common way to arrange
linguistic processing components in most common NLP architectures that involve
raw sentence input processing and syntactic parsing. Our goal is not to provide a
component architecture for linguistic processing modules, but to provide the library
functionalities that can be arranged in different general architectures that enable
LFG type parsing of raw sentence input.

The pipeline architecture above is common in Natural Language Processing
applications. For a more cognitively or psycho-linguistically adequate model we
can also arrange the language processing components in a parallel fashion, as pro-
posed in Jackendoff (1997, 2007). In this kind of architecture the individual lan-
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guage components generate representations that are mapped or synchronized with
representations generated by other language processing components. The mapping
constraints can be implemented as selection functions or constraints over possible
representations. An implementation of such a parallel processing environment can
be achieved using a blackboard or alternative message passing architecture.2

In the following sections, we will briefly describe the current state of integra-
tion of NLP components necessary for any kind of processing chain.

3.1 Grammar Formalisms

A prerequisite for any grammar-based parser is at least one grammar formalism
that specifies the format for rules as supported by the parser. The grammar for-
malisms that FLE supports include a generic CFG-formalism, two different PCFG-
formalisms, and the full set of XLE grammar components.

The CFG-formalism allows for the use of regular expression operators in the
right-hand-side of rules, such as *, +, and ?, round brackets for grouping of sym-
bols, and curly brackets with the disjunction operator |, as in the following example:

S --> NP VP
NP --> {Art|Q} N
NP --> {Art+|Q*} N
VP --> ( Adv )* V

The use of regular expression operators is similar to the rule formalism used
in XLE. The right-hand-sides of the rules are mapped on specific Finite State Ma-
chines in FLE that include cyclic paths or recursion, optionality, and disjunction.
The XLE parser uses a similar CFG-backbone.

An extension of this formalism allows additional augmentation of rules with
probabilities. This could be considered a version of a PCFG, in which the prob-
ability is associated with a complex right-hand side that may contain the regular
expression operators as described above.3

1.0 S --> NP VP
0.7 NP --> {Art|Q} N
0.3 NP --> {Art+|Q*} N
1.0 VP --> ( Adv )* V

For compatibility reasons we have added the NLTK supported PCFG-forma-
lism to FLE. This formalism uses CFG-rules in the Chomsky Normal Form (CNF).
In this format, right-hand-sides of rules are augmented with their particular prob-
ability in square brackets. The right-hand-sides are optionally grouped to their
corresponding left-hand-side symbol using the disjunction operator |.

2See Erman et al. (1980), Corkill (1991), or Hayes-Roth (1985) for some such solutions.
3Note that the interpretation of the probabilities in this formalism is open and can be used in

many different ways. A discussion of some of the possibilities to interpret and use these probabilities
would be beyond the scope of this paper.
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S -> NP VP [1.0]
NP -> Det N [0.5] | NP PP [0.25] | ’John’ [0.1]
NP -> ’I’ [0.15]
Det -> ’the’ [0.8] | ’my’ [0.2]
N -> ’man’ [0.5] | ’telescope’ [0.5]
VP -> VP PP [0.1] | V NP [0.7] | V [0.2]
V -> ’ate’ [0.35] | ’saw’ [0.65]
PP -> P NP [1.0]
P -> ’with’ [0.61] | ’under’ [0.39]

As we will discuss in more detail, the inclusion of the two PCFG-type for-
malisms allows us to extend the back-end of FLE to include probabilities for c-
structure representations in LFGs and the parsing algorithm.

3.1.1 XLE Grammar Formalism Parser

In addition to the existing grammar formalisms as described above, FLE provides
parsers for all XLE-based grammar sub components. XLE grammars potentially
consist of multiple specifications of sections that are labeled: CONFIG, FEA-
TURES, LEXICON, MORPHOLOGY, MORPHTEXT, RULES, TEMPLATES.
Each of these sections uses a specific formalism or language to specify configu-
ration parameters for the parser, the features used in the lexicon, morphology, and
syntax, or LFG rules. A description or explanation of all these sections is beyond
the scope of this article. Please consult the XLE documentation online (Crouch
et al., 2011) for more details. In the following sections, we will briefly discuss the
parsers for the XLE RULES and FEATURES.

The following rules are taken from the toy-grammar that is part of the XLE
documentation.

S --> e: (^ TENSE);
(NP: (^ XCOMP* {OBJ|OBJ2})=!

(^ TOPIC)=!)
NP: (^ SUBJ)=!

(! CASE)=NOM;
{ VP | VPaux }.

The following LBNF rules represent a segment of the LBNF-specification for
the RULES section:

Grammar. GRAMMAR ::= [RULE] ;
RuleS. RULE ::= LHS "-->" [RHS] RULEES ;
RuleS2. RULE ::= LHS "=" [RHS] RULEES ;
RuleEndSymbol. RULEES ::= ".";
RHSSymbolOptional. RHS ::= "(" RHSSYMBOL ")" ;
RHSymbolsDisjunction. RHS ::= "{" [ORHS] "}" ;

These arbitrarily selected LBNF rules display the specification of the GRAMMAR
as a list of RULE symbols. Each rule is specified as a left-hand-side LHS followed
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by a production symbol/string “=” or “->” and a list of right-hand-side symbols
RHS. Each rule is terminated by a RULEES symbol, the rule-end symbol. Some ex-
amples for right-hand-side symbols are given in the final two rules, i.e. an optional
symbol or a list of disjoint symbols.

As described in the previous section, FLE allows for different types of grammar
backbones. It can be used with a CFG or PCFG backbone. The PCFG-capability
allows for the use of grammars that can be handcrafted or extracted and trained
from common treebanks. The internal encoding of the grammar is implemented
atop a Weighted Finite State Transducer (WFST) (Berstel & Reutenauer, 1988;
Kuich & Salomaa, 1986; Salomaa & Soittola, 1978).4

The WFST-architecture of the grammar backbone provides a simple way to not
only encode a probabilistic backbone, but also to encode and process independent
lexical properties, feature specifications and related constraints in a probabilistic
manner. It allows for extended probabilistic models to be applied to the transitions
via weights, weight functions, or objects that encapsulate complex weight func-
tions. For example, the weight functions can entail unification or even semantic
operations.

In FLE, the parsed XLE RULES section of a grammar is mapped onto a WFST
as shown in Figure 1. The upper tape in the WFST in Figure 1 is represented by the
initial symbol preceding the first “/”, the lower tape corresponds to the embedded
symbol between two “/”. In this example, an initial probability or weight of 1 is
assigned to all transitions, as represented by the final element following the final
“/”. These probabilities or weights can be changed, “trained”, and subsequently
tuned, if the weights are not already provided by the grammar. For example, the
weights are provided when a PCFG-backbone is utilized.

40

1e/e/1

10e/e/1

D/e/1

5V/e/1

8

AUX/e/1

13

P/e/1

2
e/e/1

NP/e/1

11

N/e/1

6

e/e/1

NP/e/1
VP/VPaux/1

NP/PP/1

3
NP/e/1 VP/S/1

VPaux/S/1

e/VP/1

PP/e/1
e/NP/1

PP/e/1

Figure 1: Mapping a CFG on a WFST

F-structures, as specified in the toy-grammar RULES section above, are not
displayed in this WFST in Figure 1. These are left out for simplification reasons.

4See (Mohri, 2004) for an overview.

167



We discuss feature representations and unification in section 3.4 below.
Notice that the WFST in Figure 1 contains epsilon transition symbols on the

upper tape, the lower tape, or on both tapes of the transducer. These are either
specified in the grammar, as for example, in the sentence rule (“S -> e (NP)
NP { VP | VPaux }”) above, or they are inserted by the grammar-to-WFST
mapping algorithm to express, among other properties, optionality.

Given the compact representation of the grammar rules as a WFST, we are able
to model LFG grammars for bottom-up, top-down, and probabilistic parsing or
generation. That is, the upper or lower tape can be used for parsing or generation.
The upper tape paths represent the right-hand-sides and the lower-tape – the left-
hand sides of the rules from a CFG-backbone. A top-down parser would use the
lower tape. A bottom-up parser would use the upper tape to match input sequences
or edges and then replace them with their counterpart on the opposite tape. The
lower tape could be used to replace left-hand-side symbols with the corresponding
right-hand-sides to generate output c-structures and sentences (assuming an exist-
ing f-structure and corresponding mapping functions).

In addition to the flexibility of this grammar representation for parsing and
generation, we add the capability of probabilistic modeling of c-structures. The
transitions in the WFST could be weighted with probabilities that correspond to
rule probabilities in PCFGs. Alternatively, they could be used as pure transitional
probabilities for symbols and paths without any PCFG association that may be
learned from corpora or parser application. In this way we can represent the CFG-
backbone of the LFG grammar as a probabilistic model. Simply put, if we map
PCFG rule-probabilities on transition probabilities in the WFST, we can calculate
the probability of a c-structure as the product of the probabilities of the rules used
to generate or parse it. There are various ways in which the weights in a WFST
can be used or specified to enable probabilistic modeling of c-structures in LFGs.
We will discuss various options in subsequent work.

Note that the WFST-based model provides more possibilities and potential ex-
tensions to the grammar backbone. As discussed above, weights in the WFST
could be used as transitional probabilities or rule probabilities mapped on tran-
sition probabilities to estimate the likelihood of c-structures. Weights could also
be complex functions and data-structures that, for example, combine probabilities
with f-structures and unification operations. At the same time, the CFG backbone
can be extended by allowing the lower tape, i.e. the CFG-rule’s left-hand-side to be
extended. This data structure would allow for the formulation and use of context-
sensitive rules by specifying contexts and even f-structures of left-hand-side sym-
bols. We will have to postpone the discussion of such extensions to future work.
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3.1.2 Formal Specification and Parser Generation

The grammar formalisms that FLE can read are specified using an extension of
the Backus-Naur Form (BNF).5 A BNF specification of a grammar contains a set
of replacement rules. The rules in the sample below are interpreted as: a.) a
Grammar consists of a list of Rule symbols, b.) a symbol surrounded by square
brackets is interpreted as a list, c.) a Rule consists of a LHS (left-hand-side)
symbol, d.) the production symbol -> as a literal string, and e.) a list of RHS
(right-hand-side) symbols. In our formal specification of grammar formalisms we
used the the Labeled Backus-Naur Form (LBNF) formalism (Forsberg & Ranta,
2005). The LBNF formalism is used by the BNF Converter (BNFC) (Forsberg &
Ranta, 2004) to generate parser code in a variety of programming languages. The
labels here are prefixes to the rules, e.g. Gram and Rul separated from the rule by
a “.”. They are used for constructing a syntax tree that contains sub-trees that are
defined by the non-terminals of the labeled rule.

Gram. Grammar ::= [Rule] ;
Rul. Rule ::= LHS "-->" [RHS] ;

The BNF Converter (BNFC) is independent software written in Haskell that
generates code for the programming languages C, C++, Java and Haskell.6 Many
other languages can and surely will be added to the converter. The generated code
constitutes a functioning syntactic parser for the grammar formalism that generates
a parse tree for the grammar and rules in the specific formalism. These parse trees
need to be mapped to data structures for processing in FLE. This is what we refer
to as the semantics of the formalism parsers.

Since the FLE code-base is based on C and C++, we use the BNFC conversion
to C++ for our grammar formalism parsers. The LBNF specification is converted
to freely available lexer and parser generators flex7 and bison.8 The generated flex
and bison code is wrapped in a C++ class using the Visitor Design Pattern.9

Specifying the grammar formalisms in LBNF and using BNFC for parser code
generation has many advantages. The LBNF-specification of the formalisms for
CFG, PCFG, and XLE grammar components provides an intuitive and easy under-
standable representation that allows for convenient adaptations, extensions, correc-
tions and changes. The BNFC generated code and the Visitor Design Pattern that

5A discussion of the detailed specification of the different grammar formalisms that FLE sup-
ports would go beyond the scope of this paper. The formal specifications are available in the online
Bitbucket repository of FLE at the following URL: https://bitbucket.org/dcavar/fle.

6BNFC also generates a LATEXand PDF documentation of the formal language specification in a
LBNF.

7As explained in Levine (2009), flex was written by Vern Paxson around 1987 in the programming
language C. It generates code in C or C++ for lexical analyzers and tokenizers for parsers of formal
languages that are based on Deterministic Finite Automata (DFA).

8As explained in Levine (2009), bison is a parser generator that was originally written by Robert
Corbett in 1988. Given a CFG-specification for a formal language it generates parser code in the
programming languages C, C++, or Java.

9See Gamma et al. (1995) for more details).
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we utilized provide parser code in various programming languages and at the same
time minimize the coding effort for the implementation of mappings to internal
data structures and representations needed by different parsing algorithms. Given
the openness and free licensing of all the necessary components, we contribute
to the sustainability of the grammars that are based on the supported formalisms,
including the XLE grammars.

3.2 Tokenizer

FLE can process tokenized input. It also provides a set of different tokenization
approaches that can be integrated in the processing chain in various ways. A tok-
enizer provides a list of tokens for a given input sentence. The sentence John reads
a book. is tokenized into the sequence of strings ["John", "reads", "a",
"book", "."]. The following tokenization strategies and components are im-
plemented: a.) C++ tokenizer subclass directly compiled into FLE. The present
system falls back to a simple whitespace tokenizer, should no other be provided;
b.) Foma-based Finite State tokenizer. A tokenizer that makes use of the Foma
library (Hulden, 2009); c.) Conditional Random Field (CRF). A tokenizer based
upon CRF machine learning (see, for example, Wallach (2004)) which does seg-
mentation for Chinese; d.) Ucto-based tokenizers. Tokenizers that use Ucto (Jain
et al., 2012).

At this time, we are working on tokenizers for languages such as Burmese
(mya) and Chinese (zho). We have developed FST-based tokenizers for Burmese
(mya), a Tibeto-Burman language written in abugida scripts with no spaces in-
dicating word boundaries, and for Chinese (zho). These tokenizers use wordlists
and Foma regular expressions, providing a baseline left-to-right maximum seg-
mentation for Burmese or Chinese text. For both Burmese and Chinese, we are
experimenting with improved segmenting algorithms using Conditional Random
Field (CRF) sequence tagging (Tseng et al., 2005), as described below.

Other Foma, Ucto, and CRF-based tokenizers will be available in the codebase
for English (eng), German (deu), Croatian (hrv), Mandarin (cmn), Polish (pol) and
other languages in the near future.

3.2.1 Segmentation of Chinese and Burmese

Unlike English and many other Indo-European languages, Asian languages, such
as Chinese and Burmese, do not mark word boundaries with spaces. Thus, to parse
Chinese and Burmese in FLE, we first need to segment the sentences into words
so that they can be passed into the morphological analyzer (or even part-of-speech
tagger) and subsequently to the parser.

In FLE, we use CRF for Chinese segmentation, because this method has achieved
the best performance previously, and the dictionary-based longest match algorithm
for Burmese because it has yielded competitive results using only very limited
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language resources. We will briefly discuss two approaches for tokenization for
Chinese and Burmese.

Segmentation of Chinese Using Conditional Random Field Essentially, the
segmentation task is seen as a sequence labeling problem, where the CRF model
learns to give labels to each character as to whether it is a word boundary or not.
To implement a CRF segmenter, we used the C++ library dlib (King, 2009).

As of now, our CRF segmenter uses three types of features as described in Zhao
et al. (2010), i.e. character unigram features (previous character C-1, current char-
acter C0 and next character C+1), character bigram features (C-1C0, C0C+1, C-1C+1)
and character type features. The character type features denote which of the five
types the previous, current and next character belongs to. We follow Zhao et al.
(2010) to classify characters in Chinese into five types: numbers, characters refer-
ring to time (year, month, day, etc.), English letters, punctuation and other Chinese
characters. The intuition is that the character type information of the neighboring
characters will be helpful for the CRF segmenter to decide on word boundaries.

We used training data from the Second International Chinese Word Segmenta-
tion Bakeoff (Emerson, 2005) to train our model. Our current result for the test data
of the bakeoff is 93.0% on recall, 94.1% on precision and an F score of 93.6%,
using the official scorer from the bakeoff. In the next step, we will further tune the
parameters and experiment with other types of features to improve our results.

Segmentation of Burmese using Foma Our goal is a language independent sys-
tem for low-resourced languages using openly available resources without relying
on tagged corpora. We implemented a Finite State Machine for the longest match
algorithm (Poowarawan, 1986) using Foma (Hulden, 2009) and a word list for
Burmese (LeRoy Benjamin Sharon, 2016).

For an experiment, we tested the segmenter on a Wikipedia article with 3302
words in 77 sentences. The sentences were hand-segmented by a native Burmese
speaker. The baseline performance of the dictionary-based segmentation gave
86.92% precision and 92% recall. We plan to integrate this with the CRF ma-
chine learning approach with morphology as discussed above for Chinese.

3.3 Morphology

In the current codebase of FLE we make use of Foma-based Finite State Trans-
ducer (FST) morphologies using Lexc and Foma regular expressions that are also
compatible with the Xerox Finite State Toolkit (XFST) (Hulden, 2009; Beesley &
Karttunen, 2003).

The FLE codebase includes an open English (eng) morphology. This morphol-
ogy currently contains the all irregular verbs and nouns, most of the closed class
lexicon, a large set of open class items, including a broad variety of named enti-
ties (e.g. toponyms, anthroponyms, and institutions and companies). We are also
able to process multi-word expressions and unknown morphemes efficiently using
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a multi-word recognizer and unknown word guesser that wraps the Foma-based
morphology. The guessing algorithms that we experiment with in the morphol-
ogy includes lexical category and morphological feature guessing using Hidden
Markov Models (HMMs). These can be trained to guess the detailed features re-
quired by the LFG parser. An integration of the guesser into the syntactic parser
will be done in a future development phase. A detailed description of this approach
to handle unknown words is beyond the scope of this paper.

In its current version, the English morphology contains 117,705 paths, which
corresponds to the number of surface word forms with ambiguities. We estimate
that it contains 38,964 morphemes, including inflectional and derivational suffixes
and prefixes. The binary form of the FST is 1.9 MB large, with 88,783 states and
124,221 arcs. These numbers are expected to increase significantly before the final
public release of the source and the binaries.10

The following example illustrates the output from our multi-word enabled En-
glish morphology for an input sentence like Tim Cook, the CEO of Apple, works
now for Google.

0 1 Tim Tim+N+Sg+Masc+NEPersonName
1 2 Cook Cook+N+Sg+NEFamilyName
3 4 the the+D+Art+Def
4 5 CEO CEO+N+Sg+Abbrev
5 6 of of+P
6 7 Apple Apple+N+NEBusiness
8 9 works work+N+Pl, work+V+3P+Sg
9 10 now now+Adv+Temporal
10 11 for for+P, for+P+Time
11 12 Google Google+N+NEBusiness
0 2 Tim Cook Tim Cook+N+Masc+NEPersonName+NESTBusiness

The tab-delimited fields in the output consist of the index of the token span
for the respective token sequence (that is from and to token positions), followed
by the token sequence itself and a list of comma separated potential analyses. We
extend common feature sets with named entities that include NEPersonName,
NEFamilyName, NEBusiness (a business name), or NESTBusiness (a sub-
type of any named entity that is business related). We will be able to expand abbre-
viations like CEO to their full forms in the final release of the complete morphology.

Most of the lexical category and feature labels do not yet conform to any stan-
dard, nor are they synchronized with proposals from other relevant projects or best-
practice recommendations. In the final release of the morphology we will take
standardization into account and very likely change the category and feature labels
of the existing morphologies accordingly.

Within the FLE environment we also provide partial implementations of Foma-
based morphologies for other languages, including Burmese (mya), Mandarin Chi-

10The size increase would not affect the size of the binary FST-file in a significant way, rather the
number of paths and covered morphemes and morphotactic regularities.
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nese (cmn),11 or Croatian (hrv).12 From here, work is planned on further mor-
phologies for various under-resourced and endangered languages. Additionally,
we will extend the support to other binary formats and formalisms.

3.4 Features and Unification

F-structures in FLE are represented as Directed Acyclic Graphs (DAG). The At-
tribute Value Matrix in Figure 2 is a simplified structure representing basic morpho-
syntactic features.
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Figure 2: F-structure as Attribute Value Matrix (AVM) and DAG

In FLE, these AVMs are mapped to DAGs as in Figure 2. Note that, although
the DAG shows the terminal values as states, the internal representation of DAGs
that we use represents them as edges.

The graph is defined as a setG of edges that are represented as tuples {fi, ti, si,
wi}, where f is the start-state of the edge, t the target state, s the associated symbol
(an attribute or value), and w a weight. In our implementation a DAG is a set G
of such weighted edges that is associated with a general weight p for the entire
DAG. This implementation of a f-structure allows us to associate weights with
edges or entire paths in the DAG. It also allows us to represent the probability of a
specific DAG and thus the encoded f-structure independently in the DAG weight.
Such a weight could be estimated using a corpus of c-structures and f-structures,
or applying parses to a corpus of sentences.

This implementation of f-structures allows us to model associations between
f-structures and c-structures based on probabilities. A probability of a sentence
could be described as the conditional probability P (si) = P (fn | cn), where c
is one possible c-structure n for the sentence si, and f is the corresponding f-
structure for c. Probabilistic feature representations provide new possibilities for

11As one reviewer correctly points out, Mandarin Chinese is not a morphologically rich language,
thus the morphology should be rather called a lexicon or FST-based word-list. This assessment is
true, if we focus only on the Han character-based orthography. Word formation in Mandarin Chinese
could indeed be described in terms of affixation and morphotactics, as described in Packard (2000).
If we consider the Romanized orthography using Pinyin, it indeed appears plausible to describe word
formation using a two-level morphology based approach.

12A Croatian morphological analyzer was compiled using a very different FST-based framework
(Cavar et al., 2008). We are transferring the morphology to a Foma-based lexc and regular expression
format.
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robust unification or adaptation to speaker or domain specific feature properties.
Our graph-based implementation of unification is based on two specific con-

straints. All DAGs are stored in a uniform DAG-space. All edges that represent
attributes and values in those DAGs are mapped uniquely. A synchronization object
replaces all symbols (attribute names and concrete values) with unique numerical
IDs across the entire DAG-space. All states and paths receive a uniform reference,
i.e. in all DAGs an edge representing the Attribute-Value path ROOT -> AGR ->
NUM -> PL will be mapped onto a uniform edge of numerical reference points
(1, 18, 21, 35), with 1 representing ROOT , 18 representing AGR, and so
on.13 A path is a set G of edges {fi, ti, si, wi}. Terminal edges in G are specific.
Their t-value is always 0. Our unification algorithm creates the union of all edges
in two sets G1 and G2 and it only places a matching constraint on terminal-edges,
i.e. unification fails if for two edges f1 = f2, t1 = t2 = 0, and s1 6= s2. In general,
two DAGs are unified by copying one and building the edge union of the copy with
the other. Copying is necessary because unification might fail and the previous
DAG/f-structure of the first is needed in subsequent unification steps or attempts.

Although this unification algorithm is very efficient, more complicated filters
and conditions are necessary and will be implemented in future. In the current
version it is sufficient for initial experiments. Future developments might result in
revisions and changes in the data structures and related algorithms.

3.5 Parsing

The architecture of the parser depends partly on the particular grammar formalism
that is used but also on the underlying linguistic components. The parsing strategy
and the grammar properties determine the computational grammar representation
and particular parsing algorithms. For example, using an Earley parsing algorithm
(Earley, 1968) requires a specific mapping of a CFG-grammar to data structures
that makes use of left-peripheral symbols of the right-hand-side of rules. Map-
ping a grammar to a Finite State Machine (FST) with or without a stack, using
the OpenGrm Thrax environment, for example(Tai et al., 2011), requires a very
different parsing algorithm and grammar data structure internally.

We have implemented a CFG and a PCFG formalism parser, the possible back-
bones for our LFG-grammars, using the LBNF formalism. These implementations
make use of regular expression operators in the right-hand-side of rules, such as *,
+, and ?. We allow for the use of | as a disjunction operator, and grouping brackets
“(” and “)” to simplify the rule sets. This is similar to the rule formalism used in
XLE. Finite State Machines are ideal for mapping right-hand-sides of rules with
such properties (e.g. recursion, optionality, and disjunction).

In one implementation of the mapping of grammars to parser-internal data
structures, we make use of Finite State Transducers (FST), such that the one side

13The assignment of numerical values to symbols happens during run-time when parsing the gram-
mar.
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of CFG rules is read and the other written. That is, the left-hand-side of a CFG rule
is emitted when a certain right-hand-side is processed.

As mentioned above, to be able to integrate probabilities in the grammar repre-
sentation, we use a WFST (Allauzen et al., 2007). This allows us not only to store
complex right-hand-sides of rules in an FST data-structure, but also to represent
rule probabilities of a PCFG-type in the same data structure.

In addition to the mentioned CFG and PCFG formalisms, we have implemented
an LBNF specification of grammar rules used in XLE. For core rule types of the
XLE grammar formalism, we have also integrated the semantics, i.e. the mapping
of rules to internal data-structures or functions in the parser in the following way.

The different grammar formalisms are parsed and mapped on one internal
grammar representation using a WFST. This internal representation is based on
our own implementation of a WFST. We intend to base future versions on the the
OpenFST library. Our own implementation is simpler and more efficient than the
OpenFST version, and initially we did not foresee a need for functions like min-
imization or ε reduction. Avoiding dependencies on external libraries and tools
is our core strategy. An integration of OpenFST, however, would save us imple-
mentation of various FST-based operations and WFST features that are already
integrated in it.

Our use of a WFST as a data structure for the parsing algorithm allows different
grammar formalisms to be represented in similar data structures, rendering them
compatible with a variety of parsing algorithms. The mapped grammars can also
be stored persistently as binary files and exported, for example, to various other
FST exchange or visualization formats.

In the previous section we have demonstrated how the grammar formalisms are
mapped onto WFST representations internally. We have also mentioned that each
of the current grammar formalisms is defined using the LBNF formalisms (Fors-
berg & Ranta, 2004), an extension of the common BNF formalism. The BNF Con-
verter (Forsberg & Ranta, 2004) is used to generate the C++ code implementation
of the syntactic parsers for these formalisms using an intermediate flex-based and
bison-based code for lexer and parser generation (Levine, 2009) underlyingly. This
generated code is extended with the semantics to map grammars to internal WFST
representations. The effort of porting the grammar representations to other internal
formats or even other programming languages is thus significantly reduced.

Note that the mapping of CFGs to WFSTs does not include a reduction of ex-
pressiveness of the underlying CFG formalism. While we do intend to experiment
with a reduction of CFGs to FSTs by limiting the recursion depth of specific recur-
sions, in this case the WFST is applied recursively by our parser without any effect
on the complexity of the grammar as such.

The parsers for the (P)CFG backbone and the XLE RULES specification are
implemented mapping to WFSTs. The parsing algorithms that we test include an
optimized variant of the Earley Parser (Earley, 1968, 1970). In the implementation,
we took into consideration several implementation and optimization suggestions
discussed in (Aycock & Horspool, 2002), among others. The specific implementa-
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tion of the parsing algorithm makes use of the WFST-encoded grammar. It recur-
sively generates edges from the WFST representation based on the input tokens in
a bottom-up fashion. Instead of positions in dotted rules, the edges are tuples that
point to the span of input tokens and to a state in the WFST.

While we use feature representations in form of DAGs and a unification algo-
rithm that is based on such DAGs (see for example Shieber (1985)), as described
in the previous section, our ongoing evaluation is concerned with the question of
applying unification after the possible c-structure representations are generated,
or during the generation of edges while tracking paths through the WFST. In the
implementation of WFSTs weights can be implemented as instances of objects14

or functions. This allows us to associate not only a probabilistic metric to the
transitions through the WFST, but also operations like unification and resulting
f-structures.

Our goal is to integrate the algorithm for uncertainty, the unification algorithm,
and other proposals discussed in Kaplan & Maxwell (1988); Maxwell & Kaplan
(1996a,b, 1991, 1993) into the WFST architecture in a systematic way. We are able
to handle probabilities in the c-structure representations in the form of weights in
the WFST that could be mapped from a PCFG backbone or quantification of rule
applications while processing corpora. As mentioned above, these probabilities can
also be related to f-structures using DAG probabilities or products of path proba-
bilities in the resulting DAGs. We have not performed any experiments related to
c-structure and f-structure probabilities.

4 Development Plan

The FLE codebase and the entire environment with external libraries are coded in
standard C++11 and C++14. They utilize exclusively open components, including
the C++ Boost framework (Schling, 2011) and additional specialized libraries like
Foma (Hulden, 2009), OpenFST (Allauzen et al., 2007), OpenGram Thrax (Roark
et al., 2012), Ucto (Jain et al., 2012), and Dlib-ml (King, 2009). The parsers for for-
malisms in the FLE library are implemented using the Labeled Backus-Naur Form
(LBNF). The syntactic parser code for these grammar formalisms is generated by
the Backus-Naur Form Converter (BNFC) (Forsberg & Ranta, 2004), and for C
and C++ the freely available lexer and parser generators flex and bison (see Levine
(2009) and footnotes 7 and 8). The development environment requires CMake15

and common working C++ compilers with at least C++11 support.
The entire FLE environment is released under the Apache License 2.0, as are

most of the components that it uses.16 This includes all code, morpheme col-
lections and trained models that we created ourselves and that we legally can dis-
tribute. The Apache License appears to be more adequate to facilitate collaborative

14Any C++ object for example could function as a weight.
15See http://cmake.org/.
16See http://www.apache.org/licenses/LICENSE-2.0.
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academic and industry projects. It allows one to freely download and use the FLE
code or binaries for personal, company internal, or commercial purposes. The sys-
tem can be integrated in third party systems and packages. Any modifications that
are made to the FLE code do not have to be shared and redistributed, although this
is encouraged. The license requires that any reused and distributed piece of the
FLE source code or binary software has to contain proper attribution and that a
copy of the license has to be included in any redistribution.

Most of the components and external libraries that are used in FLE are released
under the Apache License 2.0. The one exception at the moment is the optional
Ucto Unicode tokenizer library, which is released under GPL version 3.0.

The resulting codebase is tested to compile on common operating system plat-
forms, e.g. Windows, Mac OS X, and various Linux distributions. The binaries will
provide libraries and executables for the common operating systems and linked
modules for some programming languages, e.g. Python.

Our development plan includes some of the following goals, without implying
any priorities: 1.) Full compatibility with the grammars of the current XLE en-
vironment. While we finalized parsers for the different grammar sections of XLE
grammars, not all features of the grammar have been semantically mapped onto in-
ternal data representations or functions; 2.) Integration of a graphical environment
for the parser and grammar development; 3.) Development of a Python module
interacting with the library and FLE components; 4.) Integration of initial seman-
tic components (e.g. Glue Semantics); 5.) Integration of a parallelized processing
chain with a blackboard architecture; 6.) Extension of the morphologies and gram-
mars or grammar fragments to other languages than English, Burmese, Chinese,
Croatian etc., by integrating specific tokenizers and morphological analyzers; 7.)
Since we foresee the possibility for generating initial PCFGs from treebanks to
bootstrap the grammar engineering process, we need to map tags from treebanks
to morphological feature annotations and LFG-type feature representations.

To integrate and experiment with a PCFG backbone we developed initial PCFG
extraction tools that can process treebanks of the Penn Treebank format (Marcus
et al., 1993). For languages that have existing treebanks such as English and Man-
darin Chinese,17 we can generate a PCFG and compact the rules for the parser
(Krotov et al., 1999).

Initial steps have been taken towards the implementation of the second goal.
The other goals are scheduled for implementation and testing in 2017.

5 Conclusion

While much of the FLE environment is under development, many components can
be considered ready and usable. This includes the specification of grammar for-
malisms for the LFG parser backbone and XLE formalism parsers, the integration

17See for example the Chinese Treebank Project (Xue et al., 2002).
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of various types of tokenizers and morphological analyzers, the CFG/PCFG back-
bones (and XLE rules) to a WFST-based grammar representation, two different
types of parsing algorithms, and DAG-based unification.

Some of the currently implemented algorithms and components might be use-
ful to other projects: a.) The LBNF specifications of the XLE grammar formal-
ism. With BNFC these formal specifications can be used to generate parsers for
the grammar formalisms in various other programming languages, including Java,
Haskell, or C#. b.) The mapping of treebanks to PCFGs has been exported to a
standalone tool. c.) A morphology-based language independent multi-word ana-
lyzer has been isolated as a standalone program.

We have performed preliminary performance tests using various Foma mor-
phologies and the first parser implementation without unification and feature logic.
Currently the English morphology as specified in a previous section, can process
more than 150,000 tokens per second on a personal computer with an Intel Core
i7 CPU and a current Linux distribution using GCC/G++ 6.x. This performance
includes only covered vocabulary with lexical ambiguities and no guesser.

The WFST backbone based syntactic parser was tested on a small grammar
with structural and lexical ambiguities and preceding tokenization and morpholog-
ical analysis of all tokens. It parses approx. 3,000 sentences per second with an
average sentence length of 7 words using the same architecture as described above.
Unification is not included in the performance tests yet. This suggests that an im-
proved version of such a parser can be expected to perform even faster in a final
release.

The code of FLE is split into two sections. We have released public code in the
Bitbucket repository at: https://bitbucket.org/dcavar/fle/. The development reposi-
tory is open to team members by invitation only. If you want to join the develop-
ment team, please send us an email and we will share the Bitbucket repository with
you.
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