
Integrating a rich external valency
dictionary with an implemented

XLE/LFG grammar

Agnieszka Patejuk
Institute of Computer Science, Polish Academy of Sciences

Proceedings of the Joint 2016 Conference on Head-driven Phrase Structure
Grammar and Lexical Functional Grammar

Polish Academy of Sciences, Warsaw, Poland

Doug Arnold, Miriam Butt, Berthold Crysmann, Tracy Holloway King, Stefan
Müller (Editors)

2016

Stanford, CA: CSLI Publications

pages 520–540

Keywords: valence, grammatical functions, grammar engineering, phraseology,
coordination

Patejuk, Agnieszka. 2016. Integrating a rich external valency dictionary with an
implemented XLE/LFG grammar. In Doug Arnold, Miriam Butt, Berthold Crys-
mann, Tracy Holloway King & Stefan Müller (eds.), Proceedings of the Joint 2016
Conference on Head-driven Phrase Structure Grammar and Lexical Functional
Grammar, Polish Academy of Sciences, Warsaw, Poland, 520–540. Stanford, CA:
CSLI Publications. DOI: 10.21248/hpsg.2016.27.

https://orcid.org/0000-0002-2367-9170
http://doi.org/10.21248/hpsg.2016.27
http://creativecommons.org/licenses/by/4.0/

Abstract

This paper shows how Walenty, a valency dictionary of Polish, was auto-
matically converted in order to be used with an XLE/LFG grammar of Polish,
discussing issues such as the grammatical function assignment under unlike
category coordination and imposing constraints for lexicalised dependents.

1 Introduction

This paper discusses how Walenty, an innovative valency dictionary of Polish, was
used in an LFG grammar of Polish implemented in XLE (Patejuk & Przepiórkow-
ski, 2012b). It begins with introducing the distinctive features of Walenty that make
it attractive from the perspective of use in an LFG grammar (§2), then it proceeds
to presenting the procedure for interpreting and converting valency specifications
from Walenty to the LFG formalism (§3). It describes the procedure of assigning
the grammatical function to dependents, taking unlike category coordination into
account, and it shows how relevant constraints are formalised using available LFG
mechanisms, covering issues such as structural case assignment in Polish, the han-
dling of passive voice and the treatment of optional arguments. Finally, it offers a
detailed formalisation of imposing constraints on lexicalised dependents which is
capable of accounting for embedding of such lexicalised specifications.

2 Walenty: an innovative valency dictionary of Polish

Walenty (Przepiórkowski et al., 2014b) is currently the largest and most precise
valency dictionary of Polish – in October 2016 it contained 85,210 schemata for
16,195 lemmata. Unlike many other dictionaries, it contains not only schemata for
verbs, but also for nouns, adjectives and adverbs. For reasons of space, this paper
focuses on verbal schemata exclusively: there are over 65,400 schemata for 12,028
lemmata, which gives 5.4 schemata per lemma on average.

Walenty is available on an open source licence (CC BY-SA 4.0) in a variety of
formats: plain text, XML and PDF. While XML is used as the input for conversion,
schemata are presented below in plain text format in order to save space.

2.1 Grammatical function labels

Walenty explicitly identifies the subject position (subj) – understood as the ar-
gument that drives verbal agreement, regardless of its category (so it takes into
account non-canonical subjects) – and the object (obj) – defined as the argument
which can become the subject under passive voice, also regardless of its category
(and case marking, if the passivisable argument is nominal).

†This research is partially supported by the Polish Ministry of Science and Higher Education
within the CLARIN ERIC programme 2016–2018 (http://clarin.eu/). The author is grateful to anony-
mous reviewers for their valuable comments which made it possible to improve this paper.

521

The verb MANIPULOWAĆ ‘manipulate’ is an example of a predicate taking a
nominal object marked for the instrumental case (inst), as shown in (2), while
(3) demonstrates that this argument can become the subject under passive voice.
The schema for MANIPULOWAĆ is given in (1) – it contains a subject marked for
the structural case (str, see §2.3) and an instrumental object:
(1) subj{np(str)} + obj{np(inst)}

(2) Manipulowała
manipulated

mną
I.INST

i
and

swoim
SELF.INST

późniejszym
later.INST

mężczyzną.
man.INST

‘She manipulated me and her later man.’ (http://nkjp.pl)
(3) Młodzi

young.NOM

ludzie
people.NOM

byli
were

manipulowani
manipulated.NOM

przez
by

starsze
elder

osoby.
persons

‘Young people were manipulated by elder people.’ (http://nkjp.pl)

Since Walenty does not distinguish grammatical functions other than subject
and object as defined above,1 other positions are not labelled with any grammatical
function and it must2 be assigned during conversion – this is discussed in §3.1.

2.2 Syntactic positions as sets

In Walenty a syntactic schema is a list of positions (separated by +) modelled as
sets of categories that can realise a given position. The set contents, enclosed in
curly brackets ({...}), with particular elements separated by semi-colons (;),
are specified according to the coordination test of Szupryczyńska 1996: if two or
more categories can be coordinated within one position, then it is a multi-element
set. For instance, in (4) the subject of BAWIĆ ‘amuse’ consists of a nominative noun
phrase (ta gra) coordinated with a clause (że tylu ludzi [. . .] dało się nabrać), so the
corresponding subj position in the schema in (5) is a two-element set containing
the np(str) and cp(że) categories. When such coordination is not possible,
a singleton set is used – the subj in (7), the schema for AKLIMATYZOWAĆ SIĘ

‘acclimatise’, contains only np(str): a nominal marked for structural case (see
§2.3). Note that the second argument of (5), np(str), is a singleton set; since
this position is not marked as an obj, it is assumed that it cannot passivise.

(4) Trochę
a little

bawiła
amused

mnie
me.ACC

ta
this.NOM

gra
game.NOM

i
and

że
that

tylu
so many

ludzi
people

[. . .]

dało
let

się
REFL

nabrać
take in

‘This sham and (the fact) that so many people let themselves be cheated
amused me a little.’ (http://nkjp.pl)

(5) subj{np(str);cp(że)} + {np(str)}

(6) subj{np(str)} + {np(str)}
subj{cp(że)} + {np(str)}

1See Patejuk & Przepiórkowski 2016 for arguments supporting such a solution.
2Unless an alternative approach to grammatical functions is adopted: see Patejuk & Przepiór-

kowski 2016 and Przepiórkowski 2016.

522

(7) subj{np(str)} + {xp(locat)}

Modelling syntactic positions as sets is innovative in that it explicitly accounts
for the coordination of unlike categories. Other valency dictionaries would use sep-
arate valency schemata for different categories, as in (6), one with a nominal sub-
ject (np(str)) and another one with a clausal subject (cp(że)), which can be
interpreted in two ways. If it is an XOR (exclusive OR) specification of the subject
(either a nominal phrase or a clause), the possibility of having a coordinated unlike
category subject such as in (4) is ruled out. If is is interpreted as an OR specification,
it allows for such coordination at the cost of overgenerating (allowing such coor-
dination when it is not possible). Such problems can be avoided by adopting the
solution proposed in Walenty, where syntactic positions are modelled as sets which
correspond to an OR specification, as in (5), which means that the given position
can be filled by any single set element (only nominal or only clausal) or by any co-
ordination of these elements, which accounts for unlike category coordination. If
the position can be filled in more than one way but the relevant elements cannot be
coordinated, the XOR specification is obtained by creating separate schemata with
singleton sets corresponding to the relevant argument, as in (6).

Note that Walenty uses container categories such as xp(locat) in (7) –
though it is a singleton set in the schema, it is equivalent to a multi-element set con-
taining all the categories listed in its corresponding list of realisations (see §2.5).

2.3 Arguments marked for structural case

Walenty provides an explicit account of structural case in Polish. Unlike lexical
case, which is stable in the sense that it is independent of the syntactic context,
structural case is understood here as a case which may take different values de-
pending on the syntactic environment – such arguments have the str value of
case. The information supplied by the valency dictionary is to be processed by the
grammar so as to assign an appropriate case in the given context.

When a subject is marked for structural case, its case marking may be realised
in three ways.3 The first possibility is the nominative case, the most prototypical
value – it is appropriate for subjects of finite verb forms which are not non-agreeing
numerals. The second value is the accusative case – it is possible when the subject
of a finite verb form is a non-agreeing numeral. Finally, the third possible value is
the genitive case – this is the case with the subject of gerunds.

When an object (passivisable or not) bears structural case, there are two possi-
ble values: accusative or genitive, depending on the availability of sentential nega-
tion and part of speech of the head assigning case. Gerunds require the genitive case
from their structural objects regardless of negation. With other verbal forms, geni-
tive is required when the verb assigning structural case is in the scope of sentential
negation; this phenomenon is known as genitive of negation (GoN). If negation is
local, GoN is obligatory, while with non-local negation (present higher in the verb

3Note that this does not apply to the subject of adjectival participles (determined by agreement)
and infinitives (determined by control).

523

chain), GoN is optional (Patejuk & Przepiórkowski, 2014b). As a result, accusative
is required as structural case when negation is not present at all and it is possible
when it is non-local to the predicate assigning structural case.4

2.4 Control, raising, predicative elements

Walenty explicitly accounts for raising and control by using controller and
controllee labels to establish relations between respective arguments. In (8),
the schema for the verb BAĆ SIĘ ‘fear, be afraid’, the subject position (subj)
containing a nominal marked for structural case (np(str)) is labelled as the
controller, while the set containing the infinitival complement (infp(_))
is labelled as controllee – such notation expresses subject control, whereby
the subject of BAĆ SIĘ controls the subject of the infinitive.5

(8) subj,controller{np(str)} + controllee{infp(_)}

These labels are also used to mark control relations with predicative arguments –
the argument that controls the predicative element is marked as controller,
while the predicative element is marked as controllee. Apart from represent-
ing what the predicative element refers to, such information may be used for ensur-
ing proper agreement where it is applicable – as in (9), the schema for the verb
UCHODZIĆ ‘pass (as)’, where the predicative adjective inside the prepositional
phrase (prepadjp(za,acc)) agrees in number and gender with the subject:
(9) subj,controller{np(str)}

+ controllee{prepadjp(za,acc)}

2.5 Semantically defined arguments

Walenty introduces a class of xp arguments – defined by their semantics rather than
category: these include ablative, adlative, locative (see (7)), etc., arguments. For
each type of xp, there is a defined list of its realisations (see (10),6 with translations
on the right), which results in economic, readable and coherent schemata.

(10) xp(locat)-->
advp(locat)
[...]
cp(int[gdzie])
[...]
prepnp(koło,gen)
prepnp(między,inst)
prepnp(nad,inst)
prepnp(na,loc)
[...]

xp(locat)-->
advp(locat)
[...]
cp(int[where])
[...]
prepnp(near,gen)
prepnp(between,inst)
prepnp(above,inst)
prepnp(on,loc)
[...]

While using a plain xp means that all its realisations are possible with a given
schema (so the given xp corresponds to a set containing all its realisations), some-
times it is the case that a given predicate does not allow all the realisations, though

4Some predicates in Polish allow partitive objects – these are covered in Walenty and treated as
a variant of structural case, where genitive is additionally allowed in partitive use.

5It is assumed that in verb control it is always the subject of the controlee that is controlled.
6The int parameter in cp(int[gdzie]) stands for interrogative – it is an interrogative

clause where the interrogative item is GDZIE ‘where’.

524

the realisations it subcategorises for have the required semantics. If the selected re-
alisations were listed as elements of the set corresponding to the relevant argument
position without stating that it is an xp phrase with specific semantics, the semantic
information would be lost, which would be an unwelcome result (as a realisation
of xp, prepnp is treated as semantic, while outside of xp it is non-semantic).
On the other hand, classifying such an argument as a “plain” xp would allow all
its realisations, which is also undesired as it leads to overgeneration. Walenty was
designed so as to provide maximal precision of the description of valency require-
ments, so it offers a subtype mechanism which makes it possible to restrict the
range of realisations of a given phrase (here, an xp phrase) to those that are appli-
cable in the given schema using a list. For example, the schema for KIEŁKOWAĆ

‘sprout’ in (11) contains an xp(adl) phrase whose realisation list is restricted to
two prepositional phrases, headed by SPOD ‘from underneath’ and Z ‘from’:
(11) subj{np(str)}

+ {xp(abl[prepnp(spod,gen);prepnp(z,gen)])}

Elements of the subtype list, enclosed in square brackets ([...]), are separated
by semicolons (;) since they may be coordinated (as in xp without subtypes).

The subtype mechanism is also used with clauses (cp): while cp(int) is an
interrogative phrase with any interrogative element defined on the relevant list, this
element may be specified using the subtype list, as in (10) (cf. fn. 6).

2.6 Lexicalised dependents

Last but not least, Walenty is one of the few valency dictionaries that include a
rich phraseological component (Przepiórkowski et al., 2014a) – it explicitly spec-
ifies lexicalised arguments and constraints imposed on them, with the possibility
of embedding such constraints arbitrarily deep, as in (13), the schema for the verb
WITAĆ ‘welcome’ used in (12):

(12) Oni
they.NOM

witali
welcomed

ją
she.ACC

z
with

(szeroko)
widely

*(otwartymi)
open.INST.PL

ramionami.
arm.INST.PL

‘They welcomed her with (widely) open arms.’ (== very warmly)
(13) subj{np(str)} + obj{np(str)} + {xp(mod);

lex(prepnp(z,inst),pl,XOR(’ramię’,’ręka’),ratr1(
{lex(adjp(agr),agr,agr,pos,’otwarty’,atr1(
{lex(advp(mod),pos,’szeroko’,natr)}))}))}

There are three arguments in (13), out of which the first two, subject and object,
are not lexicalised. The last one is a two-element set containing xp(mod) and a
lexicalised (lex) prepositional nominal phrase (prepnp) with the preposition Z

‘with’ which requires instrumental case (inst) from the nominal which must in
turn be specified for plural number (pl) and must be a form of either RAMIĘ ‘arm’
or RĘKA ‘hand’ (XOR specification). This lexicalised nominal must be modified
by exactly one dependent (ratr1), an embedded lex specification follows: an
agreeing adjectival phrase (adjp) headed by OTWARTY ‘open’, which may in turn
be optionally (atr1) modified by a lexicalised adverbial phrase (advp) headed
by SZEROKO ‘widely’, which must not be modified (natr).

525

3 Interpreting Walenty and converting it to LFG

Since Walenty uses its own formalism, it is not tied by the constraints of any par-
ticular grammar formalism and it can be used with any grammar or grammar en-
gineering platform, provided that the grammar writer is able to interpret the spec-
ifications provided in Walenty and convert them to the relevant formalism. This
section shows how this can be done for LFG on the basis of selected phenomena.

The conversion is done automatically using a Python script which ensures con-
sistency and coherence. While schemata from Walenty are presented in plain text
format, the script relies on the XML format of Walenty.

The general idea of converting a valency schema to LFG constraints is very
simple: each argument must be assigned a grammatical function and then appro-
priate constraints relevant to this argument must be imposed.

3.1 Selecting the grammatical function

Since the grammatical function must be chosen to apply relevant constraints, let
us start with the procedure of selecting the grammatical function. As mentioned in
§2.1, only two grammatical functions are specified in Walenty: the subject (SUBJ)
and the passivisable object (OBJ). The remaining grammatical functions are not
specified in Walenty, so they are assigned using the following mapping:

• OBJθ: thematic/secondary object – nominal, it does not passivise,
• OBL (oblique): non-semantic prepositional phrase,7

• OBLθ (thematic oblique): semantic prepositional phrase,
• COMP: closed clausal complement,
• XCOMP: open infinitival complement,
• XCOMP-PRED (predicative complement): open predicative nominal or adjec-

tive (possibly embedded in a prepositional phrase).8

The specification outlined above works perfectly as long as the relevant argu-
ment position contains only one realisation (it is a singleton set in Walenty). If this
is not the case and unlike category coordination is possible, as in (14), where a
clause is coordinated with a prepositional phrase (see the last position in (15), the
schema for the verb PYTAĆ ‘ask’), the choice of the grammatical function becomes
problematic because different categorial realisations of the relevant argument po-
sition seem to correspond to different grammatical functions.

(14) Pytali,
asked

[jakie
what

będą
will be

pieniądze]
money

oraz
and

[o
about

to,
this

czy
PART

zmienią
change

się
REFL

polskie
Polish

szkoły].
schools
‘They asked what money will be there and whether Polish schools will
change.’ (http://nkjp.pl)

7If there is more than one such phrase, a numeric index is appended, yielding OBL2, OBL3, etc.
8As an alternative, the closed PREDLINK grammatical function could be used.

526

(15) subj{np(str)} + obj{np(gen)}
+ {prepnp(o,acc); cp(int); prepncp(o,acc,int)}

Typically, a coordinated phrase corresponds to one grammatical function in f-
structure, so a common grammatical function should be chosen. Since, according to
the mapping provided above, a prepositional phrase (prepnp, prepncp) should
be assigned the OBL grammatical function and an interrogative clausal complement
(cp(int)) – the COMP grammatical function, which of these two grammatical
functions should be assigned to their coordination in (14)? An analogous problem
has been discussed in LFG literature in the context of OBJ as a candidate grammat-
ical function under coordination: Dalrymple & Lødrup 2000 suggest COMP should
be treated as an elsewhere grammatical function, used when only the clausal com-
plement is possible and it cannot be coordinated with a different category. The
current conversion of Walenty is inspired by this solution – it uses the ranking of
grammatical functions defined in (16) to choose the common grammatical function
from the set of candidates: the conversion script assigns each realisation of the rel-
evant argument position (each element of the set) the corresponding ranking and
then the highest ranked grammatical function candidate is chosen.

(16) # GF

4 OBL-<SEM: ABL, ADL, DUR, INSTR, LOCAT, MOD, PERL, TEMP. . . >
3 OBL

2 OBJ-<CASE: DAT, GEN, INST, STR>
1 COMP, XCOMP

According to the ranking in (16), if an argument position can be realised as a non-
semantic prepositional phrase (OBL) or as a clause (COMP), as in (15), it should
be assigned the OBL grammatical function. The XCOMP and COMP are the lowest
ranked grammatical functions: they are only selected when the clause or infinitive
are the only realisations in the set corresponding to the relevant argument position.

3.2 Imposing constraints

Once the grammatical function corresponding to a given syntactic position (the
entire set) has been chosen, appropriate constraints are imposed for each realisation
of the relevant syntactic position defined in the schema (each element of the set).

The method of formalising constraints corresponding to a given argument po-
sition depends on one crucial factor – whether the given position involves unlike
category coordination or not. When such coordination is not involved, it is suf-
ficient to use plain constraints such as in (17) and (18). However, when unlike
category coordination is allowed, which requires that the argument GF must either
have the attribute ATTR1 with V1 as its value, or the attribute ATTR2 whose value
is V2, it cannot be formalised using the disjunction of two plain constraints such as
in (19), because, instead of yielding the logical OR specification, the result will be
the undesired XOR specification.

(17) (↑ GF ATTR1)=c V1 (18) (↑ GF ATTR2)=c V2

527

(19) (↑ GF ATTR1)=c V1 ∨ (↑ GF ATTR2)=c V2

As explained in Przepiórkowski & Patejuk 2012, when a plain disjunctive con-
straint is used, it is evaluated once (one disjunct is chosen) and applied to all con-
juncts, as formalised in (20a). By constrast, the interpretation which is needed to
handle unlike category coordination is the one formalised in (20b) – it evaluates
the relevant statement for each conjunct separately, so it is possible that different
conjuncts satisfy different constraints.

(20) a. ∀x ∈ (↑ GF)A(x) ∨ ∀x ∈ (↑ GF)B(x) (actual)
b. ∀x ∈ (↑ GF)[A(x) ∨ B(x)] (intended)

The solution to this problem described in Przepiórkowski & Patejuk 2012 relies
on the use of off-path constraints in order to obtain the effect shown in (20b). In
short: constraints to be imposed on a given argument are converted to their off-path
equivalent and they are attached to the PRED attribute of the relevant argument –
this attribute is distributive by definition, which ensures that the disjunctive off-path
constraint will be distributed to each conjunct and evaluated separately.

There is a crucial difference in the formalisation of off-path constraints between
LFG theory and XLE implementation: unlike in recent theoretical LFG works (in-
cluding recent versions of Dalrymple 2001 and Bresnan 2001), off-path constraints
are non-constructive in XLE,9 which means that they can only be constraining or
existential, but they cannot be defining – they cannot introduce new attribute-value
pairs to the f-structure. As a result, constraints placed on certain attributes must
be formalised as constraining equations – rather than defining ones – regardless of
whether the constraint is off-path or plain, for the sake of consistency.

3.2.1 Structural case assignment

As mentioned in §2.3, Walenty provides information about the requirement of
structural case and the grammatical function of the relevant argument, which is
processed by the grammar, taking the syntactic context into account, in order to set
the appropriate values of case. As discussed in Patejuk & Przepiórkowski 2014b
for verbal heads in Polish, the structural object is marked for accusative case in the
absence of negation and genitive case if negation is present – the proposed formali-
sation (see (21)) uses plain constraints, so it is not compatible with unlike category
coordination. A formalisation of structural case assignment that does take this into
consideration and uses off-path constraints is provided in Patejuk & Przepiórkow-
ski 2014a (compare (22)):10

(21) STRCASE(GF) ≡ [[¬((XCOMP∗ ↑) NEG) ∧ (↑ GF CASE) =c ACC] ∨
[((XCOMP∗ ↑) NEG) =c + ∧

[[(↑ NEG) =c + ∧ (↑ GF CASE) =c GEN] ∨
[¬(↑ NEG) ∧ (↑ GF CASE) ∈c {ACC, GEN}]]]]

9See the relevant part of the XLE documentation: http://www2.parc.com/isl/groups/nltt/xle/doc/
notations.html#N4.1.5b

10See the corresponding papers for a detailed discussion of relevant constraints.

528

(22) (↑ GF PRED)
[[¬((XCOMP∗ GF←) NEG) ∧ (← CASE) =c ACC] ∨

[((XCOMP∗ GF←) NEG) =c + ∧
[[((GF←) NEG) =c + ∧ (← CASE) =c GEN] ∨

[¬((GF←) NEG) ∧ (← CASE) ∈c {ACC, GEN}]]]]
Such constraints are placed in the lexical entry of the relevant verb – though

it is less economic than placing their equivalents in c-structure rules, it allows
for an appropriate treatment of implicit arguments,11 unlike category coordina-
tion (whereby only some conjuncts are marked for structural case) and dependent
sharing (whereby the shared dependent is assigned structural case by only some of
the coordinated verbs). While the constraints are complex, they may be assigned to
a template and then short template calls may be used in particular lexical entries,
which is considerably more economic.

3.2.2 Complex constraints for clausal phrases

Walenty has two complementiser types (żeby2 and gdy) which are realised as
different complementisers (ŻE or ŻEBY for żeby2; GDY or GDYBY for gdy) de-
pending on the syntactic context – this phenomenon may be thought of as similar to
structural case assignment. If this analogy is accepted, the remaining complemen-
tiser types (such as żeby, że, jeśli and many more) may be considered lexical
since they have the same form (ŻEBY, ŻE and JEŚLI, respectively) regardless of the
syntactic environment, which includes factors such as the availability of negation
(discussed below for żeby2) and mood (gdy is sensitive to conditional mood).

The clausal phrase cp(żeby2) is different from cp(żeby) since the former
can be realised in two ways: always as ŻE and as ŻEBY only in scope of sentential
negation.12 Consider the following examples, which illustrate the schema for the
verb WYOBRAZIĆ ‘imagine’ provided in (25):

(23) Ja
I

*(nie)
NEG

mogę
can

sobie
SELF.DAT

wyobrazić,
imagine

żeby
that

ktoś
sb

mógł
could

zrobić
do.INF

coś
sth

takiego.
such

‘I cannot imagine that somebody could have done something like this.’
(http://nkjp.pl)

(24) Ja
I

(nie)
NEG

mogę
can

sobie
SELF.DAT

wyobrazić,
imagine

że
that

ktoś
sb

mógł
could

zrobić
do.INF

coś
sth

takiego.
such

‘I can (not) imagine that somebody could have done something like this.’
(25) subj{np(str)} + {np(str);cp(int);cp(żeby2);

ncp(str,int);ncp(str,żeby2)}
+ {lex(np(dat),_,’siebie’,natr)}

11Assigning case to implicit arguments using c-structure rules would require placing such con-
straints on the verb directly – which has the same effect as placing them in the lexical entry.

12 ŻEBY may also be used as the realisation of cp(żeby2) in generally negative contexts such
as in (i), where the verb WYOBRAZIĆ ‘imagine’ takes cp(żeby2) as one of its arguments:
(i) Z

with
trudem
difficulty

mogę
can

sobie
SELF.DAT

wyobrazić,
imagine

żeby. . .
that

‘It is only with difficulty that I can imagine that. . . ’

529

The plain constraint corresponding to cp(żeby2), one of the realisations of the
second argument of (25), is provided in (26) – it states that the complementiser
ŻEBY is only possible when negation is present, as in (23), while ŻE is possible at
all times (there are no constraints on the value of NEG), as in (24):

(26) [(↑ NEG)=c + ∧ (↑ GF COMP-FORM)=c ŻEBY] ∨
(↑ GF COMP-FORM)=c ŻE

3.2.3 Passive voice

Another issue that is worth discussing is the method of handling passive voice.
LFG grammars typically use a lexical rule, but an alternative method is used when
converting Walenty – passive versions of schemata are created using the script.

In XLE the passive lexical rule manipulates the assignment of grammatical
functions using string substitution: OBJ → SUBJ – the active object becomes the
passive subject; SUBJ → OBL-AG/NULL – the active subject becomes the passive
oblique agent or it is dropped. Such a rule is capable of changing control relations:
(↑ OBJ)=(↑ XCOMP SUBJ) is the control equation used the active verb TEACH,
whereby the object of TEACH is at the same time the subject of the infinitival com-
plement of TEACH, while in the passive it is (↑ SUBJ)=(↑ XCOMP SUBJ) – because
the active OBJ becomes the passive SUBJ.

Unfortunately, when applied to constraints which depend on the grammatical
function, such a lexical rule has undesired effects. When the active verb takes an
object marked for structural case (accusative or genitive, see §3.2.1), the case con-
straint will be imposed on the passive subject (simplifying, typically nominative),
which results in ungrammaticality. It is, however, easy to introduce such changes
in the process of conversion: when the passive version of the relevant schema is
created, the script first changes the assignment of grammatical functions and then
imposes the constraints, which results in changing all the appropriate constraints.

Furthermore, this method makes it possible to introduce more complex addi-
tional constraints where it is appropriate: for instance, when the active subject may
only be a clause, it could not be the complement of the OBL-AG by-phrase be-
cause the preposition requires a certain value of case from its complement, which
is normally a nominal. In this situation, a correlative pronoun might be added in
the passive, resulting in a well-formed by-phrase.

3.2.4 Argument reduction

The next issue that must be considered when converting Walenty is the issue of ar-
gument reduction: by design, Walenty only provides maximal schemata (listing all
possible arguments), but at the same time it assumes that all arguments are optional
– in Polish most arguments may be dropped in the sense that they are not expressed.
This is illustrated below: the schema for the verb DOWODZIĆ ‘command’ provided
in (27) contains two arguments – a subject and a passivisable object. (28) shows
that both arguments can be realised lexically, but they may also be omitted.

530

(27) subj{np(str)} + obj{np(inst)}

(28) (Mój
my.NOM

ojciec)
father.NOM

dowodził
commanded

(siłami
forces.INST

republikańskimi).
republican.INST

‘My father commanded republican forces.’ (http://nkjp.pl)

When performing the conversion, one must decide how to interpret this phe-
nomenon in an implemented grammar. One way is to assume that the argument
is present but it is not realised lexically – in this way the argument is represented
syntactically, the relevant grammatical function attribute is present, but its value
is ‘PRO’ – see the f-structure in (29), which corresponds to (28) with the object
dropped. The alternative approach is to assume that the relevant argument is re-
moved, that it is not present in the f-structure of the verb – this solution involves
the creation of reduced frames, which have fewer arguments than the maximal
frame, as in (30), where the object is removed from the list in PRED attribute.

(29)

PRED ‘COMMAND〈 1 , 2 〉’

SUBJ 1

PRED ‘FATHER’
CASE NOM
NUM SG
PERS 3

ADJ
{[

PRED ‘MY’
]}

OBJ 2

[
PRED ‘PRO’
CASE INST

]

(30)

PRED ‘COMMAND〈 1 〉’

SUBJ 1

PRED ‘FATHER’
CASE NOM
NUM SG
PERS 3

ADJ
{[

PRED ‘MY’
]}

The proposed method of interpreting Walenty uses a hybrid solution – it divides
arguments into two classes: obligatory (must be present in syntactic representation)
and optional (can be removed from syntactic representation).

First, if the absence of an argument changes the meaning of the predicate – as
in the case of lexicalised arguments and the SIĘ marker, which can be reflexive,
reciprocal or inherent (in the last case it carries no semantic information, but it
is required syntactically as in BAĆ SIĘ in (8), which means ‘to fear’, not ‘to fear
oneself’) – then the argument is assumed to be obligatory and it must be lexical
(overtly expressed).

The second diagnostic is whether there is syntactic evidence that the relevant
argument is syntactically active even though it has no surface realisation. There is
evidence which supports implicit subjects and implicit controllers. As shown below
using subscript indices, in Polish it is the subject which binds13 the SIEBIE anaphor
(see (31)) and controls participles (see (32)). If the subject were removed from the
schema, sentences with no lexical subject could not be parsed (because the subject
position would have no value, resulting in incompleteness) and would be expected
to be ungrammatical, counter to fact:

13With the exception of reciprocal predicates – in (i) sobie is bound by the object, sąsiadów:
(i) Przedstawił

introduced
sobies
SELF

(nawzajem)
reciprocally

sąsiadóws.
neighbours

‘He introduced the neighbours to one another.’

531

(31) (Anteka)
Antek.NOM

opowiedział
told

Erykowie
Eryk.DAT

o
about

sobiea/∗e.
SELF

‘(Antek) told Eryk about himself.’
(32) Wychodząca/∗e,

leaving
(Anteka)
Antek.NOM

pocieszał
comforted

Erykae.
Eryk.ACC

‘Leaving, (Antek) was comforting Eryk.’

The second group of arguments which may be implicit are controllers of in-
finitives and predicative complements – the reason for having implicit arguments
is the same as for controlling participles: the subject of the controlled element
is structure-shared with the controller, so the controller must be present in the f-
structure. In this case, however, the controller may be different than the subject, see
the examples below:

(33) Dowódca
commander.NOM

kazał
ordered

(nam
us.DAT

wszystkim)
all.DAT

uciekać.
escape.INF

‘The commanding officer ordered us all to run away’. (http://nkjp.pl)
(34) Antek

Antek
zawsze
always

uczyni
make

(Eryka)
Eryk

szczęśliwym.
happy

‘Antek will always make (Eryk) happy.’

According to the schema in (35), the controller of the infinitival complement of the
verb KAZAĆ ‘order’ in (33) is the dative nominal. By contrast, the schema in (36)
specifies the passivisable object marked for structural case as the controller of the
predicative complement of the verb UCZYNIĆ ‘make’ in (34).
(35) subj{np(str)} + controller{np(dat)}

+ controllee{cp(żeby); infp(_)}
(36) subj{np(str)} + obj,controller{np(str)}

+ controllee{adjp(inst)}

In (33)–(34) controllers may have no lexical realisation, they are nevertheless re-
quired by syntax (controlled phrases must have controllers), so they are represented
in the f-structure representation as implicit arguments (‘PRO’ is the value of their
PRED attribute) – the f-structure in (37) corresponds to (33), while (38)14 provides
a representation of (34) without the lexical object:

(37)

PRED ‘ORDER〈 1 , 2 , 3 〉’

SUBJ 1

[
PRED ‘COMMANDER’
CASE NOM

]

OBJθ 2

[
PRED ‘PRO’
CASE DAT

]

XCOMP 3

[
PRED ‘RUN_AWAY〈 2 〉’
SUBJ 2

]

(38)

PRED ‘MAKE〈 1 , 3 〉 2 ’

SUBJ 1

[
PRED ‘ANTEK’
CASE NOM

]

OBJ 2

[
PRED ‘PRO’
CASE ACC

]

XC-PRED 3

[
PRED ‘HAPPY〈 2 〉’
SUBJ 2

]

Such implicit arguments are introduced optionally (in brackets), so as not to
block lexical realisations of the relevant argument – see (39):

(39) ((↑ GF PRED)= ’PRO’ ∧ (↑ GF CASE)= CASE_VALUE)
14For typesetting reasons, XC-PRED is used in (38) instead of XCOMP-PRED.

532

(40) ((↑ GF PRED)= ’PRO’ ∧ [(↑ GF CASE)= ACC ∨ (↑ GF CASE)= GEN])

The first conjunct in (39) introduces an implicit argument (PRO) as the value of GF,
while the second one assigns case to this argument – in accordance with respec-
tive constraints from Walenty. When the implicit argument is marked for structural
case, the constraint in (40) is used instead.15 There is no need to introduce the
implicit subject – this is done by the grammar rules (at the level of c-structure).

When none of the criteria presented above is satisfied, the relevant argument is
assumed to be optional and it may be reduced – this is done by removing it from the
PRED attribute and removing the respective constraints that apply to it. Removing
arguments in such a way requires care because controllers must not be removed
unless the corresponding controllee is removed. However, once the controllee is
removed, the controller label is removed from the controller and then it can
also be reduced (unless is it a subject – as explained above, it is assumed that
subjects do not undergo reduction).

An alternative approach to argument reduction would be to introduce implicit
PRO arguments for all arguments, but this would result in implicit clauses and
prepositional phrases, which would introduce a lot of additional ambiguity – many
predicates take both and a parse would be created for each such argument. Besides,
there seems to be no syntactic evidence for introducing such implicit arguments.

3.2.5 Lexicalised dependents: formalisation of modification patterns16

Only one aspect of the formalisation of lexicalised dependents is discussed in this
section, namely the constraints corresponding to the modification pattern defined
in Walenty – these include:

• natr: no further modification,
• atr[(...)]: modification allowed (optional), it may be iterated,
• atr1[(...)]: at most one modifier allowed,
• ratr[(...)]: modification required (obligatory), it may be iterated,
• ratr1[(...)]: exactly one modifier required.

Apart from natr which precludes any modification,17 the modification pattern
symbol can be followed by a list of dependents (its optionality is expressed using
square brackets: [...]) whose elements are separated by +, as in “top level”
Walenty schemata. They may be non-lexicalised or lexicalised – in the latter case
an embedded lex specification is used, it can be arbitrarily deep.

The natr modification pattern, forbidding any dependents, is converted as the
negative constraint in (41) (plain) or in (42) (off-path),18 where PATH is the f-

15The values of CASE introduced by (40) are constrained by equations discussed in §3.2.1.
16Since §3.2.5 and §3.2.6 are implementational, they use XLE notation. See http://www2.parc.

com/isl/groups/nltt/xle/doc/notations.html#N0A for the complete notation mapping used by XLE.
17Though the word “modification” is used, the “modifier” is understood as any dependent: it may

either be an argument or an adjunct – this is not specified in Walenty as it is assumed that this is
restricted by the lexical entry of the lexicalised dependent.

18Off-path counterparts of subsequent plain statements may be provided without comments.

533

structure path leading to the lexicalised dependent, while GFALL is defined as in
(43)19 – as the disjunction of all grammatical functions used in the grammar.20

(41) ~(PATH GFALL)
(42) (PATH PRED: ~(<- GFALL))
(43) GFALL = {SUBJ|OBJ|OBL(-?*)|(X)COMP|(X)ADJUNCT|POSS}

The ratr specification requires a dependent which may be constrained (an
embedded argument list is provided then) or not. In the latter case it is assumed
that it may be any dependent allowed by the particular head – the constraint in
(44) uses the GFDEP variable, which is resolved to the disjunction of grammatical
functions allowed by the given head.

(44) (PATH GFDEP) (45) (PATH PRED: (<- GFDEP))
On the other hand, when the dependent is given explicitly (as an element of the

embedded list), the schematic constraint in (46) is used, where GFDEP is the gram-
matical function of the particular dependent, chosen according to its specification,
while ATTR stands for the relevant attribute and v for its required value.
(46) (PATH GFDEP ATTR)=c v
(47) (PATH PRED: (<- GFDEP ATTR)=c v)

When there is more than one element on the list of possible modifiers, the fol-
lowing constraints are used: the first line in (48) is the disjunctive constraint where
particular disjuncts contain existential equations requiring the grammatical func-
tions which correspond to particular dependents on the list inside ratr. Its pur-
pose is to satisfy this modification requirement by ensuring that at least one of the
listed required dependents is present. The following lines contain disjunctive con-
straints for each of the dependents on the list (GFDEP1 for the first one, etc.) which
ensure that either the dependent corresponding to the given grammatical function
is present and it satisfies the relevant requirements (the positive first disjunct – it
corresponds to (46)) or that it is not present (the negative second disjunct).
(48) {(PATH GFDEP1) | (PATH GFDEP2) | ...}

{(PATH GFDEP1 ATTR)=c v | ~(PATH GFDEP1)}
{(PATH GFDEP2 ATTR)=c v | ~(PATH GFDEP2)}
...

(49) (PATH PRED:
{(<- GFDEP1) | (<- GFDEP2) | ...}
{(<- GFDEP1 ATTR)=c v | ~(<- GFDEP1)}
{(<- GFDEP2 ATTR)=c v | ~(<- GFDEP2)}
...)

Finally, it is necessary to block all dependents other than those specified in
ratr – in (50) the GFDEP variable corresponds to a disjunction of all grammatical
functions allowed in ratr, while GFALL corresponds to all grammatical functions
possible with the given head.
(50) ~(PATH GFALL - GFDEP)

19The actual version accepted by XLE does not use regular expressions.
20 The expansion of GFALL could be narrowed down to grammatical functions possible with the

given head, reducing the number of disjuncts.

534

(51) (PATH PRED: ~(<- GFALL - GFDEP))

The ratr1 specification is a modified version of ratr – the difference is that
the former limits the number of required dependents to exactly one. As with ratr,
the ratr1 can be constrained (using an embedded argument list) or not.

When ratr1 is not constrained using a list, the constraints in (52) and (53)
are used – note that these are a conjunction of ratr constraints: the first conjunct
is the positive constraint shown in (44) or (45), while the second conjunct is the
negative constraint in (50) or (51).

(52) (PATH GFDEP)
~(PATH GFALL - GFDEP)

(53) (PATH PRED:
(<- GFDEP)
~(<- GFALL - GFDEP))

If the given head can take more than one dependent, more complex constraints must
be used: (54) and (55) are disjunctive constraints, where each disjunct corresponds
to one category allowed by the given head – the first disjunct requires the GFDEP1
grammatical function and blocks all grammatical functions other than GFDEP1,
the second disjunct is analogous.

(54) {
(PATH GFDEP1)
~(PATH GFALL - GFDEP1)
|
(PATH GFDEP2)
~(PATH GFALL - GFDEP2)
|
...
}

(55) (PATH PRED:
{
(<- GFDEP1)
~(<- GFALL - GFDEP1)
|
(<- GFDEP2)
~(<- GFALL - GFDEP2)
|
...
})

However, when the dependent list is given in ratr1, the constraints on par-
ticular dependents are imposed as described for ratr – when there is only one
element on the list, the constraints in (46) or (47) are used for imposing positive
requirements for the given phrase and (50) or (51) are used for blocking all other
dependents. The following constraints result:

(56) (PATH GFDEP ATTR)=c v
~(PATH GFALL - GFDEP)

(57) (PATH PRED:
(<- GFDEP ATTR)=c v
~(<- GFALL - GFDEP))

When the list of dependents contains more than one element, the following
constraints are used, where, as in (54) and (55), each disjunct corresponds to one
element on the list of dependents – the difference is that each disjunct constrains
the relevant dependent appropriately:

(58) {
(PATH GFDEP1 ATTR)=c v
~(PATH GFALL - GFDEP1)
|
(PATH GFDEP2 ATTR)=c v
~(PATH GFALL - GFDEP2)
|
...
}

(59) (PATH PRED:
{
(<- GFDEP1 ATTR)=c v
~(<- GFALL - GFDEP1)
|
(<- GFDEP2 ATTR)=c v
~(<- GFALL - GFDEP2)
|
...
})

535

Since the atr specification expresses the optionality of a certain requirement,
it either requires a certain dependent using the appropriate ratr specification or
it blocks any dependents using the natr specification. For this reason, instead
of rewriting all the constraints, only general schemata are provided here: (60)
is appropriate for plain atr constraints, while (61) is its off-path counterpart –
<ratr_constraint> is the placeholder for the relevant ratr constraint (atr,
like ratr, may be followed by an embedded list specifying dependents or un-
specified), which may be disjunctive or not, and <natr_constraint> is the
placeholder for the natr constraint.

(60) {
<ratr_constraint>
|
<natr_constraint>
}

(61) (PATH PRED:
{
<ratr_constraint>
|
<natr_constraint>
})

To give an example, (62) is the plain version of constraints for atrwith a spec-
ified list of dependents, where the list contains more than one dependent – the last
disjunct is the negative constraint corresponding to the natr specification in (41),
while the remaining disjuncts are taken from the corresponding ratr specifica-
tion in (48). (63) is the off-path counterpart of (62) – its last disjunct corresponds
to (42), while the remaining ones correspond to the off-path version of ratr spec-
ification given in (49).
(62) {

{(PATH GFDEP1) | (PATH GFDEP2) | ...}
{(PATH GFDEP1 ATTR)=c v | ~(PATH GFDEP1)}
{(PATH GFDEP2 ATTR)=c v | ~(PATH GFDEP2)}
...
|
~(PATH GFALL)
}

(63) (PATH PRED:
{
{(<- GFDEP1) | (<- GFDEP2) | ...}
{(<- GFDEP1 ATTR)=c v | ~(<- GFDEP1)}
{(<- GFDEP2 ATTR)=c v | ~(<- GFDEP2)}
...
|
~(<- GFALL)
)

Finally, the treatment of atr1 is fully analogous to atr discussed above –
since atr1 expresses that a certain optional dependent can occur only once, it
is formalised as a disjunction of the appropriate ratr1 constraint and the natr
constraint, as presented in the general schemata provided below:

(64) {
<ratr1_constraint>
|
<natr_constraint>
}

(65) (PATH PRED:
{
<ratr1_constraint>
|
<natr_constraint>
})

536

3.2.6 Lexicalised dependents: an example

Let us now consider an example on the basis of the schema for WITAĆ ‘welcome’
in (13) discussed in §2.6, repeated as (66) for the sake of convenience:
(66) subj{np(str)} + obj{np(str)} + {xp(mod);

lex(prepnp(z,inst),pl,XOR(’ramię’,’ręka’),ratr1(
{lex(adjp(agr),agr,agr,pos,’otwarty’,atr1(
{lex(advp(mod),pos,’szeroko’,natr)}))}))}

It consists of 3 positions, of which the last one contains a non-lexicalised xp(mod)
phrase which can be coordinated with a lexicalised (lex) prepnp phrase – ac-
cording to the ranking in (16), the entire position is assigned the OBL-MOD gram-
matical function (see §3.1). Since the position involves coordination (the set con-
tains two phrases, one of which, xp(mod), is additionally a container category,
see §2.5), off-path constraints must be used.

Note that constraints for lexicalised (lex) phrases consist of two parts: the
non-lexicalised constraints appropriate for the given base category (the first pa-
rameter of lex) and lexicalised constraints – these two constraint types are marked
using comments below (enclosed in quotes: "...").

Let us discuss the constraints for the last position of (66) in detail, stepwise:
first, only fragments of relevant constraints are presented (all partial constraints
use the same off-path anchor: the PRED attribute of the OBL-MOD grammatical
function) and placeholders such as <constraints_for_...> are used for the
rest of the relevant constraint (discussed later as the next fragment). Finally, the
entire constraint, consisting of fragments discussed earlier, is presented.

For the prepositional nominal phrase prepnp(z,inst), base category con-
straints include the preposition form (assigned in PRED since it is a semantic21

preposition) and case required from the nominal element (since the preposition
is semantic, the nominal is analysed as its OBJ). Furthermore, the specification
of lexicalised constraints such as number, lemma and modification pattern of the
prepositional nominal phrase (prepnp) applies to its nominal component – it must
be plural, its lemma can either be ramię or ręka (it is constrained using a two
element list with the XOR operator)22 and it requires exactly one modifier (ratr1)
which is specified further as another lexicalised phrase, an adjectival phrase: adjp.
(67) (^ OBL-MOD PRED:

{
<constraints_for_xp(mod)>
|
"base category constraints: prepnp(z,inst)"
(-> FN)=c z (<- OBJ CASE)=c inst
"lexicalised constraints"
(<- OBJ NUM)=c pl
(<- OBJ PRED FN)=c ramię

<constraints_for_ratr1>
})

21It is semantic because the grammatical function assigned to the entire position is OBL-MOD.
22The constraint in (67) handles ramię as the lemma, an analogous constraint is used for ręka.

537

The adjp dependent of the nominal (np – this is because constraints apply to
the nominal inside the prepositional phrase) is assigned23 the ADJUNCT grammat-
ical function (GFDEP is resolved to ADJUNCT in ratr1 specification). The only
base category constraint for adjp restricts the value of its _CAT attribute to one
of the following categories: adj is an adjective, ppas and pact are adjectival
participles, passive and active. When it comes to lexicalised constraints, the values
of case, number and gender are specified as agreeing (agr), so no constraints
are introduced – such agreement is handled by the general grammar rules. The ad-
jective is specified for positive degree (pos), so a DEGREE constraint is used. The
lemma of adjp must be otwarty – a simple PRED specification is used here.
Finally, the modification pattern of adjp is specified as atr1 – it may optionally
take exactly one dependent, which is another lexicalised phrase, an advp(misc).
(68) (^ OBL-MOD PRED:

"base category constraints: adjp(agr)"
(<- OBJ ADJUNCT CHECK _CAT)$c {adj ppas pact}
"lexicalised constraints"
(<- OBJ ADJUNCT DEGREE)=c positive
(<- OBJ ADJUNCT PRED FN)=c otwarty
~(<- OBJ GFALL - ADJUNCT)

<constraints_for_atr1>)

The constraints for the advp(misc) in (69) include the base category con-
straint restricting its _CAT to adv, followed by lexicalised constraints on degree
(pos) and lemma (szeroko) and natr as its modification pattern (see (70)):
(69) (^ OBL-MOD PRED:

{
"base category constraints: advp(misc)"
(<- OBJ ADJUNCT ADJUNCT CHECK _CAT)=c adv
"lexicalised constraints"
(<- OBJ ADJUNCT ADJUNCT DEGREE)=c positive
(<- OBJ ADJUNCT ADJUNCT PRED FN)=c szeroko
~(<- OBJ ADJUNCT GFALL - ADJUNCT)

<constraints_for_natr>)
|
~(<- OBJ ADJUNCT GFALL)
})

(70) (^ OBL-MOD PRED: ~(<- OBJ ADJUNCT ADJUNCT GFALL))

The entire (except for the placeholder for xp(mod) constraints, used for rea-
sons of space) constraint for the last argument of (13) is given in (71):24

(71) (^ OBL-MOD PRED:
{
<constraints_for_xp(mod)>
|
"base category constraints: prepnp(z,inst)"
(-> FN)=c z (<- OBJ CASE)=c inst
"lexicalised constraints"
(<- OBJ NUM)=c pl

23For reasons of space, the entire mapping for dependents of non-verbal predicates cannot be
presented here. As is standard in LFG and ParGram, the adjp dependent of np is an ADJUNCT, the
advp dependent of adjp is also an ADJUNCT.

24All instances of GFALL variable used in (71) could replaced with unique, indexed variables
such as GFALL_ADJP, GFALL_ADVP so that they have an expansion which is appropriate for a
given head–dependent pair of categories, as explained in fn. 20.

538

(<- OBJ PRED FN)=c ramię
"<constraints_for_ratr1>"
"base category constraints: adjp(agr)"
(<- OBJ ADJUNCT CHECK _CAT)$c {adj ppas pact}
"lexicalised constraints"
(<- OBJ ADJUNCT DEGREE)=c positive
(<- OBJ ADJUNCT PRED FN)=c otwarty
~(<- OBJ GFALL - ADJUNCT)

"<constraints_for_atr1>"
{
"base category constraints: advp(misc)"
(<- OBJ ADJUNCT ADJUNCT CHECK _CAT)=c adv
"lexicalised constraints"
(<- OBJ ADJUNCT ADJUNCT DEGREE)=c positive
(<- OBJ ADJUNCT ADJUNCT PRED FN)=c szeroko
~(<- OBJ ADJUNCT GFALL - ADJUNCT)

"<constraints_for_natr>)"
~(<- OBJ ADJUNCT ADJUNCT GFALL)

|
~(<- OBJ ADJUNCT GFALL)
}

})

4 Conclusion

This paper presented how valency information from Walenty, currently the largest
and most precise valency dictionary of Polish, can be used in an LFG grammar of
Polish, presenting selected issues in more detail, together with a full formalisation.

The quality of the performed conversion of Walenty is evaluated and improved
by building an LFG structure bank of Polish: human annotators manually disam-
biguate structures produced by the grammar which uses the lexicon with converted
valency information from Walenty – see Patejuk & Przepiórkowski 2014c.

It is perhaps worth noting that the work presented here from the implementa-
tional side also supported theoretical work on the definition of grammatical func-
tions in LFG (Patejuk & Przepiórkowski, 2016, 2014a) and formal issues such as
imposing constraints in LFG under unlike category coordination (Przepiórkowski
& Patejuk, 2012; Patejuk & Przepiórkowski, 2012a).

References

Arnold, Doug, Miriam Butt, Berthold Crysmann & Tracy Holloway King (eds.).
2016. The proceedings of the HeadLex16 conference. Stanford, CA: CSLI Pub-
lications.

Bresnan, Joan. 2001. Lexical-functional syntax Blackwell Textbooks in Linguis-
tics. Blackwell.

Butt, Miriam & Tracy Holloway King (eds.). 2014. The proceedings of the LFG’14
conference. Stanford, CA: CSLI Publications.

Dalrymple, Mary. 2001. Lexical-Functional Grammar. Academic Press.

539

Dalrymple, Mary & Helge Lødrup. 2000. The grammatical functions of comple-
ment clauses. In Miriam Butt & Tracy Holloway King (eds.), The proceedings of
the LFG’00 conference, University of California, Berkeley: CSLI Publications.

Patejuk, Agnieszka & Adam Przepiórkowski. 2012a. A comprehensive analysis of
constituent coordination for grammar engineering. In Proceedings of the 24rd
international conference on computational linguistics (COLING 2012), Mum-
bai, India.

Patejuk, Agnieszka & Adam Przepiórkowski. 2012b. Towards an LFG parser
for Polish: An exercise in parasitic grammar development. In Proceedings of
the eighth international Conference on Language Resources and Evaluation,
LREC 2012, 3849–3852. Istanbul, Turkey: ELRA.

Patejuk, Agnieszka & Adam Przepiórkowski. 2014a. Control into selected con-
juncts. In Butt & King (2014) 448–460.

Patejuk, Agnieszka & Adam Przepiórkowski. 2014b. Structural case assignment
to objects in Polish. In Butt & King (2014) 429–447.

Patejuk, Agnieszka & Adam Przepiórkowski. 2014c. Synergistic development of
grammatical resources: a valence dictionary, an LFG grammar, and an LFG
structure bank for Polish. In Proceedings of the thirteenth workshop on Tree-
banks and Linguistic Theories (TLT13), Tübingen, Germany.

Patejuk, Agnieszka & Adam Przepiórkowski. 2016. Reducing grammatical func-
tions in LFG. In Arnold et al. (2016).

Przepiórkowski, Adam. 2016. How not to distinguish arguments from adjuncts in
LFG. In Arnold et al. (2016).

Przepiórkowski, Adam, Elżbieta Hajnicz, Agnieszka Patejuk & Marcin Woliński.
2014a. Extended phraseological information in a valence dictionary for NLP ap-
plications. In Proceedings of the workshop on lexical and grammatical resources
for language processing (LG-LP 2014), 83–91. Dublin, Ireland: Association for
Computational Linguistics and Dublin City University.

Przepiórkowski, Adam, Elżbieta Hajnicz, Agnieszka Patejuk, Marcin Woliński,
Filip Skwarski & Marek Świdziński. 2014b. Walenty: Towards a comprehensive
valence dictionary of Polish. In Nicoletta Calzolari, Khalid Choukri, Thierry De-
clerck, Hrafn Loftsson, Bente Maegaard, Joseph Mariani, Asuncion Moreno, Jan
Odijk & Stelios Piperidis (eds.), Proceedings of the ninth international Confer-
ence on Language Resources and Evaluation, LREC 2014, 2785–2792. Reyk-
javík, Iceland: ELRA.

Przepiórkowski, Adam & Agnieszka Patejuk. 2012. On case assignment and the
coordination of unlikes: The limits of distributive features. In Miriam Butt &
Tracy Holloway King (eds.), The proceedings of the LFG’12 conference, 479–
489. Stanford, CA: CSLI Publications.

Szupryczyńska, Maria. 1996. Problem pozycji składniowej. In Krystyna
Kallas (ed.), Polonistyka toruńska uniwersytetowi w 50. rocznicę utworzenia
UMK. Językoznawstwo, 135–144. Toruń: Wydawnictwo Uniwersytetu Mikołaja
Kopernika.

540

