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Abstract

This paper seeks to improve HPSG engineering through the design of more terse,
readable and intuitive type signatures. It argues against the exclusive use of IS-A
networks and, with reference to the English Resource Grammar, demonstrates that
a collection of higher-order datatypes are already acutely in demand in contempo-
rary HPSG design. Some default specification conventions to assist in maximizing
the utility of higher-order type constructors are also discussed.

1 Introduction

Types are good to have around. Not only do they assist in compile-time error de-
tection and efficient run-time code generation, but they have the ability to reflect
the grammar designer’s perspective or intuitions about constructs within the gram-
mar, simply by their presence in the source code as names/labels. They also make
grammars more modular. In particular, to take the classical view on this topic from
the theory of programming languages, types are what mediate communication be-
tween modules. Within the logic of typed feature structures, types can also serve
as an alternative to structure sharing in complex descriptions, which can often be
difficult to conceptualize or debug. This essentially enforces a kind of modularity
on descriptions.

In HPSG, types are related by subtyping, otherwise known as the IS-A relation,
and this relation is interpreted as subset inclusion. Many of the early attempts at
developing knowledge representations in the 1960s posited perfectly reasonable re-
lations among their concepts when viewed in isolation, but they were unsuccessful
in the long term because there were no systematic principles at work across those
different attempts — principles that anyone else could adhere to and by which they
could understand how to reuse and modify those resources. This point was demon-
strated quite convincingly by Brachman with his work on the KL-ONE system
[Brachman, 1977]. This work ultimately led to a large number of conceptual rea-
soning systems that were able to automate certain forms of inference by exploiting
the semantic properties of a small number of primitives used for organizing knowl-
edge. Foremost among those primitives was IS-A, which has also since formed the
backbone of class relationships in many object-oriented programming languages
with subtyping [Ait-Kaci, 1984]. It was from this trend that HPSG took its initial
inspiration in employing types with inheritance [Pollard, personal communication].
In HPSG, this same partial order defines how types inherit features.

In the intervening 20 or so years, however, there have been a number of fur-
ther developments in the type systems of both description logics and the theory of
programming languages that have largely passed grammar development in HPSG
by — although there has been no shortage of more theoretical work on the connec-
tions among formal grammar, type theory and category theory. There has been a
recent trend in HPSG towards using types (rather than features) wherever possible
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to encode distinctions among information states in signatures. The reasoning given
has generally been consistent with the benefits mentioned above, e.g., greater effi-
ciency without loss of elegance [Flickinger, 2000], but the down-side of this trend,
that simple types can mediate only simple communication, has not received much
attention or redress. HPSG’s almost exclusive use of IS-A is a very simple type
system indeed. The only “method,” again to appeal to programming languages
terminology, is unification, or the least upper bound operation.1 In the case of the
English Resource Grammar (ERG), this least upper bound is taken relative to a
signature with between 2,000 and 10,000 types, depending on how one counts, and
this is anything but modular to work with.

The present research programme began with an attempt to determine whether
simple HPSG-style typing, while it may not be modular, has performed adequately
in its other role of capturing and accentuating the intuitions of the ERG’s designers.
Although we were not the designers, our extensive study of the ERG type signature
has forced us to conclude that is has not. In what follows, we seek to contribute
the missing grammar-development-oriented perspective on the potential for using
a richer set of typing constructors in HPSGs, in part by enumerating a collection of
higher-order datatypes that are provably “in demand.” This proof takes the form of
references to (in places, simplified) examples from the ERG signature,2 in addition
to a discussion of conventions that will assist in maximizing their utility.

Specifically, we observe the informal but routine use of the following higher-
order constructors among the types of the ERG:

1. parametric products,

2. optionality,

3. Smyth powerdomains,

4. purity / strictness,

5. finite domains.

We discuss several default specification conventions (not to be confused with de-
fault unification) as well as a further generalization of the proposals made by Er-
bach [1994] and Penn [1998] for embedding these constructions into larger type
hierarchies.

There are probably other higher-order constructors worth using — we do not
intend this to be a closed class. None of the constructors enumerated above, more-
over, should come as a surprise. Parametric types have been used in Pollard and

1Breaking with the ERG literature’s convention of writing more specific types below their more
general supertypes, we will follow Carpenter’s [1992] convention of inverting the type hierarchy, but
still calling the more specific types ‘subtypes.’

2In particular, we refer to a near-ALE-compatible port of an October, 1999 version of the ERG
generated from the CSLI test suite using scripts written for this purpose by Ann Copestake. We are
indebted to her for making the grammar, test suite and scripts available to us.
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Sag [1994] and earlier for reasoning about lists. Finite domains were available in
Erbach’s ProFIT system [Erbach, 1995] and the Smyth powerdomain construction
has been identified as highly relevant to signature representations of feature neu-
trality and coordination [Levy and Pollard, 2002]. To our knowledge, however, the
closest any grammar development environment (GDE) has come to realizing these
is ProFIT, and even then only as finite domains and a limited form of parametric
typing without the conventions necessary (in our view) to encourage their use on a
large scale. In addition, our proposal for default specification bears some similarity
to Koenig and Jurafsky’s [1994] proposal of “on-line type construction,” and to the
treatment of intersection types in the TDL system [Krieger and Schaefer, 1994].

The payoff, ultimately, will naturally include more readable and transparent
grammar signatures, but also the potential to automate certain portions of the gram-
mar development process, to increase the inferential capacity of GDEs, and thus
to assist developers in understanding the grammars they build. With a few su-
perficial exceptions, that capacity is currently limited to automatically computing
the unification algebra implied by the signature. Feature structure unification is a
by-product of the primitives IS-A and HAS-A (feature appropriateness), and this
limitation is due to the conventional restriction of using only these two primitives
in signature development.

2 The case against IS-A

As external observers examining the ERG signature after its completion, our pri-
mary sources of evidence that IS-A is not sufficient are the naming conventions
applied to types and the regular or near-regular correspondences which are appar-
ent relative to the IS-A relationships posited between those types. These sources
are corroborated by discussions in the linguistics literature (as early as Pollard and
Sag [1994]) of the intended significance of various types and alternative formula-
tions. To this extent, IS-A networks have adequately conveyed to us the intentions
behind the types employed, but at a cost, both in terms of the time required, and in
terms of our inability to automatically deduce many of these regularities.

As a result of this study, we can cite three specific shortcomings evident in the
exclusive use of IS-A in the ERG, as enumerated in the subsections below.

2.1 Lack of a uniform semantics

Problems with semantic uniformity should be readily apparent to those who have
attempted to construct object models in programming languages using subsump-
tion hierarchies. The problem centers around the difficulty of expressing rela-
tionships other than inclusion. Object-oriented programming languages differ in
the remedies they provide, such as user-defined methods, ad hoc overloading or
inheritance-based polymorphism in C++, and interface implementation in Java.

In an orthodox view of both typing and HPSG, the only remedies provided in
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the context of grammar development exist outside the type system itself, such as
feature values with appropriateness and description-level structure sharing. A less
orthodox view, both linguistically and relative to the role of typing in program-
ming languages, suggests that types and description-level functions or relations are
in fact equivalent (an instance of the so-called Curry-Howard isomorphism), and
thus that Prolog-style relations can also mediate communication between mod-
ules, namely through their arguments. Such relations, as operationally distinct
constructs, are not productively used in the ERG, and in HPSG its mention gen-
erally evokes the expectation of very costly run-time proof searches.3 Against the
backdrop of such a prejudice, higher-order typing constructors are, to our knowl-
edge, the only available formal alternative. The use of relations will not be explored
further here, but it is important to note the availability and relatedness of this op-
tion.

In the HPSG linguistics literature, on the other hand, one instead often finds a
resort to informal typographical conventions that also exist outside the type system.
As a very influential example on the ERG, we may consider Sag’s [1997] treatment
of relative clauses (Figure 1). This paper analyzes relative clauses along two sep-
arate dimensions: clausality and headedness. In other words, every subtype of
phrase must make some claim regarding whether or not it is a clause and whether
or not it has a head. The capitalization and framing of CLAUSALITY implicitly
indicates that this is not a kind of phrase but a dimension of phrasal classification.

The problem with such a convention is that within the formal type system itself,
there is still no multi-dimensionality. The link from phrase to CLAUSALITY, for
example, simply looks like any other IS-A link. In addition, if CLAUSALITY and
HEADEDNESS are indeed different dimensions, they should not have common
subtypes such as wh-subj-rel-cl. That this particular join is not an ordinary upper
bound but in fact a subtype of phrase that reifies a particular choice of CLAUSAL-
ITY and HEADEDNESS is not indicated with even a typographical convention.

2.2 Erosion of dimensionality

The ERG, to its credit, has eliminated the types CLAUSALITY and HEADED-
NESS, but has retained the essential problem with the above analysis. In addition,
these types have been replaced by types called clause and headed-phrase, which
are two among the many immediate subtypes of phrasal, a subtype of phrase (Fig-
ure 2). In doing so, it is simply less apparent that phrases can be analyzed along
these two independent dimensions.

Parametric typing, the use of functions that map products of types to types,
circumvents this problem by allowing us to explicitly identify each of the top row
of intersection types by the combination of properties it represents, e.g., phrase(wh-

3In HPSG’s type system, these searches actually have a parallel in the requisite task of maximal
sort resolution. This is NP-complete [Penn, 2001], and as a result, many grammars, including the
ERG, have been developed with an alternative view of subtyping in mind in which this resolution is
never performed.
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Figure 1: Dimensions of Classification of Relative Clauses.
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Figure 2: Erosion of Dimensionality in the Relative Clause analysis.
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rel-cl, hd-subj-ph) rather than wh-subj-rel-cl, and define the type signature without
having to explicitly enumerate all of the possible combinations. The parameters
of parametric types cannot be “structure-shared” because they are only types, not
feature structures, so the potentially non-modular effects of structure-sharing are
still absent.

2.3 Inconsistent naming conventions

Most HPSG linguists probably realize what a wh-subj-rel-cl is, and the name itself
does suggest that this phrasal type is a rel-cl and a hd-subj-ph (although headedness
itself is not indicated), but there are other cases in the ERG where the naming
conventions are far less transparent. For example:

� Order is sometimes used rather than an additional compound name. The
difference between a head-adj-ph and a adj-head-ph, for example, is that the
former is both head-initial and a head-mod-phrase-simple, while the latter is
head-final and a head-mod-phrase-simple.

� Some would-be parameters actually appear in their negated forms, such as
the subtypes, nonque, nonrel and nonslash, of word. Presumably, this choice
of polarity serves to reduce the number of intersection types that would oth-
erwise need to have been explicitly defined.

� The type non1sg does not actually refer to all non-first-singular person-
number combinations, but only to those that are also non-third-singular. To
know this, we must observe that non1sg is actually a subtype of non3g in
the ERG. The name presupposes an acquaintance with English verbal inflec-
tional patterns.

� Several different kinds of connectives are employed in names, and, because
these names are simply strings, it is not always clear what their scope is. We
thought we understood 1or3pl+2per+1per+non1sg, for example, until we
saw that it is a subtype of 1sg*+2per+1per+non1sg.

� Other connectives are simply not clear in their intended meaning. basic-cp-
prop+ques-verb, for example, has only one supertype (verb-synsem). This
is not the same

�
that denotes intersection elsewhere.

With parametric types, intersection types are implicitly created, and the names
of the parametric types themselves serve to better identify their decomposition and
purpose. Notice that pernum, the base person-number combination, could just as
well be index(person,number), noun(person,number) or verb(person,number), to
indicate what is intended. As for head-adj-ph and adj-head-ph, there are by our
count at least five independent dimensions on which phrases are being classified:

1. initial vs. final,
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2. binary vs. unary,

3. headed vs. non-headed,

4. intersective vs. scopal, and

5. ’h’ vs. ’n’ (we have not determined what these letters stand for).

These are in addition, although not unrelated, to the more familiar distinctions
among complement phrases, subject phrases, etc. of HPSG. It took us a day to
determine that these were the parameters, but we can now say where an n-adj-
redrel-ph stands with respect to all of them. Can you?

3 Higher-order constructors for the ERG

3.1 Parametric/Product types

We have already seen a few instances where parametric types seem to be called for.
For the most part, we follow Penn [2000] in the formal details of extending type
signatures to parametric type signatures. Formally, parametric types are functions
that provide access or a means of reference to a set of types (their image) by means
of argument types called parameters (their domain). In HPSG, the best known
example is the unary parametric type, ������� . �����	��
��� labels feature-structure-encoded
lists in which each member is of type � .

Definition 1. A parametric (type) hierarchy is a finite bounded-complete partial
order (BCPO), ����������� , plus an arity function, �������� "!#�%$'& (�)+*�,.-	/10 , and a
partial argument assignment function, 23�4!5�768�96:(�)+*�&;(<)+*=,>-	/10 , in which:

� � consists of (simple and) parametric types, and includes the most general
type, ? , which is simple, i.e., �@�A���� B
C?D�FEG/ ,

� For HI�KJMLN� , 2 � 
OHI�KJ1�P��� , written 21QR 
���� , is defined iff HS� � J and TVU9�DU
2XW@�C��Y#
OHB� ,

� /ZUS21QR 
����[US2\W@�C��YB
�J5� , when it exists, and

� if 2 QR 
����^]E_/ and 2 QR 
����FEG2 QR 
a`\� , then �<Eb` .

Every parametric type hierarchy, � , is equivalent to a possibly infinite non-
parametric IS-A network, c'
��d� :
Definition 2. Given parametric type hierarchy, ���e���^�f�	�@�A���� =�K2g� , the induced (type)
hierarchy, ��c'
��h�����ji+� , is defined such that:

� c'
��d�FElkhm\ngojc m , where the sequence -	c m 0 mXngo is defined such that:

– c�pjEq-PH:r�HsLt���	�@�A���� #
OHB�uE_/10 ,
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– c m���� Elc m ,M-PH�
�� � �������	�P���	��
����� R�� � rAH Ls���P��� LMc m ��TdU ��U9�@�A���� B
OHB� 0 ,
and

� H�
�� � ���������P� ����
������ R�� �[�ei�Jg
�� � �������	�	� �	��
����� Q � � iff HM� � J , and, for all
T�U�� U �������� B
OH#� , either 21QR 
�� �uEG/ or � � � i ����� � � � .

Subtyping in c=
��d� is given by subtyping according to � , and subtyping in every
dimension according to c=
��d� .

A parametric type signature consists of a parametric type hierarchy together
with a feature appropriateness specification:

! HXH W#" H=�"!%$�&K��� �N6t� $ &;
�c'
��d�e$ & c'
��h�P���

in which the value restrictions can make reference to the parameters of the type that
bears their features. Penn [2000] also defines the structural restrictions on para-
metric type hierarchies and appropriateness specifications, called semi-coherence,
persistence and parametric determination, that ensure that the equivalent non-
parametric signature is a BCPO.

In practice, parametric type signatures can be defined using an adjacency rep-
resentation of a cover relation and type variables that take scope over these and the
value restrictions of any attached appropriateness specifications. For example, in
ALE-like notation, parametric lists can be defined by:

list(X) sub [e_list(X),ne_list(X)].
ne_list(X) intro [hd:X, tl:list(X)].

Here the type variable X ranges over all possible types, including other lists. As
alluded to in Penn [2000], however, it is possible to employ parameter restrictions
to force the equivalent non-parametric BCPO to be finite. In the case of the para-
metric index type referred to above, we can restrict its parameters to the sensible
portions of the type hierarchy that deal with person, number, and gender:

index(P:person,N:number,G:gender) sub [ref(P,N,G)].
index(3rd,sing,neut) sub [there,it].

Here, each parameter restriction declares a filter, or upward closed set of types,
from which the corresponding parameter must be chosen. The definitions from
Penn [2000] are not compatible with the second line of the index example above,
but can be extended, once parameter restrictions are in place, to allow maximal
types in the image of a parametric type to be used on the left-hand-side of a sub-
typing declaration. Again, the only trick is to define the structural conditions in
the original parametric type signature that preserve bounded-completeness in the
equivalent non-parametric signature, if that is desired.

In the example above, this extension is necessary because there is only one
kind of index(P,N,G) that requires further speciation, and there and it cannot be
viewed as subtypes of other combinations of person, number and gender, such as
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mid coord prop mid coord nonprop top coord prop top coord nonprop

mid coord top coord

binary headed binary nonheaded unary headed unary nonheaded
(coord phr)

binary headed nonheaded unary

phrase

sort

Figure 3: Extension of a filter of parametric types.

index(2nd,plural,masc). In the case of the ERG, we can see this at work within the
classification of English phrase types (as simplified in Figure 3). phrase is clas-
sified along the dimensions of arity and headedness, but only binary nonheaded
requires further speciation along the dimensions of mid vs. top, and prop. This can
be declared as follows:

% boolean dimension
bool sub [+, -].

% arity dimension
arity sub [binary, unary].

% "semantic height" dimension
semheight sub [mid,top].

% phrase is classified according to arity and headedness
sort sub [phrase(arity:arity,head:bool)].
coord_phr syn phrase(arity:binary,head:-).

% add extra dimensions where necessary
coord_phr adds (sem:semheight,prop:bool).

Notice that each dimension or parameter can bear a name, such as head, to permit
greater reuse of more general filters such as bool. Also note that new parameters
can simply be added to an existing product where necessary with adds/2without
introducing a new parametric type, and that type synonyms like coord phr can be
defined for greater readability.

Parametric typing is a very expressive device, especially because parameter
variables can take scope over appropriateness specifications. The other construc-
tors presented below, in fact, can be viewed as parametric types for which the cor-
respondence to a non-parametric IS-A network is given by something other than a
product.
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3.2 Optionality

Several dimensions can be thought of as optional. When they are not present, extra
types are used in the ERG to assert this. For example, there is a type no head, and
a no cl mode, and although they do not occur as types on their own, the suffixes,
no affix word, no quant, and notopkey are attached to many type names. In the

case of luk, a supertype of bool, it is called na (alongside the usual
�

and $ ).
In the case of xmod, absence is signified by notmod, and there is even a positive
counterpart called hasmod (not to be confused with has aux, which refers to the
English auxiliary verb, “has”). All of these represent a special kind of linear sum
with the standard bool type filter. Decomposing xmod’s filter as follows:

lmod rmod lmod rmod

hasmod notmod E�� mod=+ -

xmod bool

lmod rmod
E optional( ),

mod

we can view this as an application of the higher-order constructor optional, which
glues its argument (actually the filter rooted at its argument) to a copy of the bool
filter. As with parametric types, the bool filter still exists in the induced IS-A net-
work, so the following naming convention can be used to refer to the members of
the type hierarchy that this constructor induces:

xmod �& mod?
notmod �& � mod
hasmod �& mod

lmod �& lmod
rmod �& rmod.

3.3 Smyth powerdomains

The ERG also defines some types as conjunctions or disjunctions of other types.
These types have received a great deal of attention in the literature on coordination
in languages with overt case, because they seem to be necessary to capture various
generalizations about the coordination of unlike cases (disjunctive), and they es-
tablish a symmetry to treatments of feature neutrality in parasitic gap constructions
(conjunctive).

We agree with the arguments presented in Levy and Pollard [2002] that these
conjunctive and disjunctive types are drawn from the Smyth powerdomain closure
of an underlying partial order of basic types (such as cases and their disjunctions).
As will be seen below (Section 4), this is not the same as believing that the full
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Smyth powerdomain is warranted or even correct in every language, only that some
subset of it is. The ERG itself uses only various subsets depending on the basic
partial order involved. Where we depart from the ERG is in believing that the
(subset of the) Smyth closure must be specified in terms of its basic IS-A links.
The Smyth construction can be specified explicitly with a smyth constructor that
expresses this more straightforwardly.

Simplifying the ERG’s tense filter somewhat, for example, we can fit this con-
structor to it:

pres+past+fut

pres+past past+fut pres+fut past pres fut

past pres fut E smyth( ).

tense tense

Many other sort subtypes in the ERG signature, including, but not limited to, case,
gender, pernum, and mood, have filters containing disjunctions and conjunctions,
suggesting a Smyth powerdomain.

3.4 Purity / Strictness

In the ERG, many types also have a “strict” variant declared as a subtype, e.g.,
strict pernum as a subtype of pernum, strict tense, a subtype of tense, etc. Strict
variants isolate those subtypes with a more classical or narrowly defined sense
within a larger classification. Levine et al. [2001] calls this aspect of types “purity”
rather than strictness, and extends it to apply to conjunctive types to account for
instances of case neutralization. Daniels [2002] proposes to extend it further to
disjunctive types to account for certain coordination data. The following table
illustrates the notational variation between these approaches on the one hand and
the ERG on the other:

Aspect Daniels ERG
purity ’p-’ prefix unmarked or strict prefix
impurity unmarked ’-*’ suffix
conjunctive ’-’ connective ’+’ connective (non-minimal)

’and’ connective (minimal)
disjunctive ’+’ connective ’or’ connective

Strict extensions of type filters in the ERG do differ somewhat in their structure
from that of purity in Daniels [2002] (notably, pure types are never subtypes of
other pure types), but as Daniels’s [2002] proposal is more systematic in its appli-
cation of the extension, we shall consider it further in this section rather than the
ERG. There is a near one-to-one correspondence between pure and impure variants
of types, which can be analyzed into a product between a simpler hierarchy and a
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pure-impure filter. Regularizing one of Daniels’s [2002] examples by adding a new
type to distinguish between impure and pure nom-acc:4

p-acc p-nom-acc p-nom p-nom-acc

acc p-nom+acc nom E�� p-acc nom-acc p-nom

nom+acc acc p-nom+acc nom

nom+acc,

we see that this is contained within:

p-nom-acc

p-acc nom-acc p-nom

acc p-nom+acc nom

nom+acc

nom-acc pure

E acc nom 6
nom+acc impure.

The left-hand-side of this product, however, is simply the Smyth powerdomain of
a classic case distinction:

nom acc pure

E smyth( ) 6
nom+acc impure.

The purex constructor builds the necessary portion of this product, in which the
IS-A links between pure types are missing:

p-nom-acc

p-acc nom-acc p-nom

acc p-nom+acc nom

nom+acc

nom acc

E purex(smyth( )).

nom+acc
4This does not change the meaning of the construction because p-nom-acc is the sole maximal

extension of nom-acc.
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Notice the following symmetry: optional is a sum with the discretely ordered
�

and $ , whereas purex is formed from a product with the totally ordered impure and
pure.

In the ERG, strict variants appear as part of many type declarations, including
tense, aspect, gender, pernum, and luk.

3.5 Finite domains

The ERG also employs finite domains, or powersets of finite sets by enumerating
all disjunctive combinations of a discretely ordered set of basic elements. The case
example above contains a simple instance of this:

nom acc

purex(smyth( ))

nom+acc

E purex(smyth(fd( - nom,acc 0 ))).

Another example is the ERG’s system of extended boolean types, rooted at luk.
Systematizing the ERG naming conventions used here and simplifying the filter
somewhat, we can see:

- na + - na +
na or - + or - na or + E fd( ).

luk
na or - or +

(luk)

Portions of the phrase filter also have finite-domain-like structure.

3.6 Unions of constructors

Some of the examples above are slightly modified from the type hierarchy frag-
ments that actually occur in the ERG. As they actually appear, they can still be
thought of as reflexes of higher-order constructors, but only by taking the union
of several different ones. Union is the implicit operator that combines the differ-
ent subtyping declarations in a signature, so this is nothing unusual. In the case
of higher-order typing constructors in which the names of individual types are es-
tablished by convention, however, some additional means is necessary for taking
the union of non-disjoint sets of types in order to determine which types are be-
ing referred to by multiple names. In the ERG, the unions we have analyzed for
which this is necessary all consist of higher-order constructors that apply to iden-
tical filters, so this is most easily achieved by thinking of union as a higher-order
combination of these constructors. For example, in the case of the pure-impure
cases as they appear in Daniels [2002]:
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p-acc nom-acc p-nom

acc p-nom+acc nom

nom+acc

acc nom acc nom

E smyth( nom+acc ) k purex( nom+acc )

acc nom

E (smyth , purex)( nom+acc ).

Taking bool to be bool* (because it has subtypes,
���

and $ � ) and equivalent to
+ or -, and luk to be equivalent to na or + or -, we can approximate the decom-
position of the luk filter as it appears in the ERG as follows:

- + and - +

-* na +*

na or - bool na or +

luk

+ - + - + -
� smyth( bool ) k purex( bool ) k fd(opt( bool )

+ -
E (smyth , purex , (fd � opt))( bool ).

This decomposition is only approximate (hence the subset sign, � ) because there
is no pure extension of the bool type. In a GDE, only a basis of most general types
would need to be provided as arguments, on the assumption that the argument sets
are upward-closed:

luk type union([smyth,purex,fd(opt)],bool).

The tense hierarchy as it stands in the ERG:

past+fut pres+fut pres+past future past present

fut* past* present* tense

tense*

can similarly be approximated:

past pres fut past pres fut
� smyth( tense ) k purex( tense )

past pres fut

E (smyth , purex)( tense )

This, too, is an approximation because there is no type, pres+past+fut, in the ERG.
Finally, the xmod hierarchy:
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lmod rmod
lmod* rmod* notmod

hasmod notmod or rmod
xmod

can be approximated, taking hasmod to be lmod or rmod and xmod to be not-
mod or lmod or rmod:

lmod rmod lmod rmod
� fd(opt( mod ) k purex( mod ).

It is an approximation because there is no type, notmod or lmod, and there is no
pure extension of mod or hasmod.

In the next section, we address the problem of working with these approxima-
tions in practice.

4 Default Specifications

Why did the ERG’s designers not use parametric types or these other constructors
in the first place? A major reason is that, in many cases, the least upper bounds
they were attempting to achieve could only be approximated with them. To re-
consider Figure 1, not every combination of CLAUSALITY and HEADEDNESS
is licensed in English — the allowable combinations are explicitly and exhaus-
tively enumerated in the intersection types given at the top of the figure, and this
enumeration is a major component of this hierarchy’s factual contribution. With
parametric types, one defines the entire range of possible products, unless there is
some other convention to tell us which combinations to select or exclude.

There are several reasons to prefer higher-order constructors with such a con-
vention over simply using IS-A networks to enumerate the possibilities. First, we
would argue that it is often a better indication of the developers’ perspective on
grammar design to use higher-order constructors to define a “smoother,” more reg-
ular landscape of possibilities from which those admitted by the grammar can be
selected. This is analogous to the benefit that accrues to constraint-based gram-
mars by using signatures to create a more general canvas of possible typed feature
structures from which principles of grammar select the ones licensed by the theory.
Second, the higher-order declarations make the subtyping definitions more terse
and structurally richer, which is then easier for others to navigate through. Third,
semi-lattice completion types and other structurally necessary closure types can
draw upon this more regular landscape to select their own names. The semi-lattice
completion types in the ERG are currently named with “glbtype” plus a number.
Fourth, it is possible in principle to use this larger range of types to define a set of
possibilities from which a statistical method could select those that are appropri-
ate to a particular corpus or other large domain with more reliability than human
grammar designers are capable of.5

5We are indebted to Rob Malouf for this suggestion during the conference. He also reports that
some intersection types that were excluded from the ERG have since been discovered within corpora.

334



There are several possible conventions that we can imagine using in combina-
tion with higher-order typing. All of them use a combination of three devices:

1. Explicit declarations that accompany the signature declaration (such as types
to include or exclude),

2. Generators, seed sets of included types that are implicitly inferred from their
presence in other constructs of the grammar (principles, phrase-structure
rules, lexicon, etc.), and

3. Closure under certain structural operations in the signature. Possible opera-
tions include:

(a) joins: if two types are included, so should their least upper bound be,

(b) supertyping: if a type is included, so should all of the more general
types that it extends,

(c) subtyping: if a type is included, so should all of its more specific ex-
tensions,

(d) appropriateness: if a type is included, so should all of the types that
have appropriate features with that type as a value restriction,

(e) value restriction: if a type is included, so should all of the value restric-
tions that its appropriate features bear.

Again, this is not intended as a closed class of possibilities. It may also be the
case that different closures or conventions are used with different sets of types,
according to which constructors were used to declare them, or according to where
they appear in the grammar. For example, types that appear in a construct other
than a lexical item or lexical rule may be closed under joins. No matter what the
choice, the equivalent induced IS-A network can be calculated off-line, and thus at
no run-time computational cost.

Which conventions are appropriate is naturally an empirical question, and given
that only a single grammar has been the object of our study to date, it is one that
remains to be answered. In the ERG, at least, what we observe is that closure under
supertyping is generally appropriate for types found in lexical rules and the phrase
filter, and in the case of pure/strict constructions, this is augmented with closure
under joins. strict 2per, for example, never appears in the grammar apart from its
declaration in the signature. But parsing the sentence, “you jump,” requires the
existence of this type, as the least upper bound of strict non3sg, the PN value of
the lexical entry for “jump,” and 2per, the PN value of the entry for “you.” We
assume that filters would play a significant role not only in serving as the argu-
ments of constructors, as in the previous section, but in defining the scope of these
conventions.
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5 Conclusion

This paper provided an argument for using higher-order type constructors within
grammar development, drawn largely from examples in the ERG signature. Of
the 1503 ERG types that we have manually inspected and classified so far, 894
have been semi-lattice completion types, 234 have been substitutes for parametric
types, 60 have been auxiliary types to enforce strictness (such as those suffixed
with ’-*’), 34 have been disjunctive closures of other types present (such as could
be achieved with finite domains), and 16 have been conjunctive (such as could
be achieved with Smyth closure). That means that approximately 56.5% of the
non-completion types could be replaced by a certainly much smaller collection of
higher-order constructions with a default specification convention. An additional
195 were lexical semantic relations, over which other higher-order constructors
may possibly exist. This remains a very tantalizing area of further exploration.
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