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Constraint-Based RMRS Construction
from Shallow Grammars

Abstract

We present a constraint-based syntax-semantics interface for the construc-
tion of RMRS (Robust Minimal Recursion Semantics) representations from
shallow grammars. The architecture is designed to allow modular interfaces
to existing shallow grammars of various depth—ranging from chunk gram-
mars to context-free stochastic grammars. We define modular semantics con-
struction principles in a typed feature structure formalism that allow flexible
adaptation to alternative grammars and different languages.

1 Introduction

Semantic formalisms such as UDRT (Reyle, 1993), CLLS (Egg et al., 2001), or
MRS (Copestake et al., 2003) provide elegant solutions for the treatment of seman-
tic ambiguities in terms of underspecification—most prominently scope. In recent
work, Copestake (2003) has investigated a novel aspect of underspecification in
the design of semantic formalisms, which is concerned with the representation of
partial semantic information, as it might be obtained from shallow, i.e., incom-
plete syntactic analysis. The main rationale for this type of underspecification is
to ensure monotonicity, and thus upwards compatibility of the output of shallow
parsing with semantic representations obtained from full syntactic parsing. Thus,
Copestake’s design of RMRS—Robust Minimal Recursion Semantics—provides
an important contribution to a novel line of research towards integration of shallow
and deep NLP. While previous accounts (Daum et al., 2003; Frank et al., 2003a)
focus on shallow-deep integration at the syntactic level, Copestake aims at integra-
tion of shallow and deep NLP at the level of semantics.

In this paper we review the RMRS formalism designed by Copestake (2003)
and present an architecture for a principle-based syntax-semantics interface for
RMRS construction from shallow grammars. We argue for a unification-based ap-
proach to RMRS construction, to account for (underspecified) argument binding in
languages with morphological as opposed to structural argument identification. We
propose a reparsing architecture for RMRS construction that is especially designed
to support flexible adaptation to different types of shallow to intermediate-level
syntactic grammars that may serve as a basis for RMRS construction. We de-
fine modular semantics construction principles in a typed feature structure (TFS)
formalism (Carpenter, 1992), which favours the portability to new grammars and
languages. A challenge for principle-based semantics construction from shallow
†The research reported here was conducted in the project QUETAL, funded by the German Min-

istry for Education and Research, BMBF, under grant no. 01 IW C02. Thanks go to Ann Copestake
and Dan Flickinger for discussion of our work, and to the audience of the HPSG Workshop on Se-
mantics in Grammar Engineering, for interesting comments and questions.
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grammars is the flat and sometimes non-compositional nature of the structures they
typically produce. We propose RMRS semantics construction principles that can
be applied to flat syntactic structures with various degrees of partiality.

The paper is structured as follows. Section 2 introduces the RMRS formalism.
Section 3 gives an overview of the architecture we propose for RMRS construc-
tion from shallow grammars. We argue for a modular, constraint-based semantics
construction module in a reparsing architecture, which we realise in the unification-
based finite-state processing platform SProUT (Becker et al., 2002; Drozdzynski
et al., 2004). In Section 4, we present the principles we define for morphologi-
cal disambiguation and semantics construction from shallow grammars. Section 5
concludes and compares our work to alternative approaches.

2 RMRS—A Formalism for Partial Semantic Represen-
tation

Copestake (2003) presents a formalism for partial semantic representation that is
derived from Minimal Recursion Semantics (MRS) (Copestake et al., 2003). Ro-
bust Minimal Recursion Semantics is designed to support novel forms of integrated
shallow and deep NLP, by accommodating semantic representations produced by
NLP components of various degrees of partiality and depth of analysis—ranging
from PoS taggers and NE recognisers over chunk and (non-)lexicalised context-
free grammars to deep grammars like HPSG with MRS output structures.

The advantages of a variable-depth semantic analysis are most evident for ap-
plications with conflicting requirements of robustness and accuracy. Given a range
of NLP components of different depths of analysis that deliver compatible se-
mantic representations, we can apply flexible integration methods: apply voting
techniques, or combine partial results from shallow and deep systems (Copestake,
2003).

To allow intersection and monotonic enrichment of the output representations
from shallow systems on one extreme of the scale with complete representations of
deep analysis on the other, the missing specifications of the weakest system must
be factored out from the most comprehensive deep representations. In the RMRS
formalism, this concerns the following main aspects of semantic information:

Argument encoding. A ‘Parsons-style‘ notation accommodates for partiality of
shallow systems wrt. argument identification. Instead of predicates with fixed ar-
ity, e.g., l4:on(e′ ,e,y), predicates and arguments are represented as independent ele-
mentary predications: on(l4,e′), ARG1(l4,e), ARG2(l4,y). This accounts for the un-
certainty of argument identification in shallow grammars. Underspecification with
respect to the type of argument is modeled in terms of a hierarchy over disjunctive
argument types: ARG1 < ARG12, ARG2 < ARG12, ARG12 < . . . < ARGn.
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Variable naming and equalities. Constraints for equality of variables in elemen-
tary predications are to be added incrementally, to accommodate for knowledge-
poor systems like PoS taggers, where the identity of referential variables of, e.g.,
adjectives and nouns in potential NPs cannot be established, or else chunkers,
where the binding of arguments to predicates is only partially established.

An example. The following example of corresponding MRS (1.a) and RMRS
(1.b) representations illustrates these differences (cf. Copestake, 2003).

(1) Every fat cat sat on a mat

a. MRS representation:
l0:every(x,h1,h2), l1:fat(x), l2:cat1(x), l3:CONJ, l4:sit1(espast ,x),
l14:on2(e′ ,e,y), l9:CONJ, l5:some(y,h6,h7), l6:table1(y), qeq(h1,l3),
qeq(h6,l6), in-g(l3,l1), in-g(l3,l2), in-g(l9,l4), in-g(l9,l14)

b. RMRS representation:
l0:every(x0), RSTR(l0,h1), BODY(l0,h2), l1:fat(x1), l2:cat1(x2),
l3:CONJ, l4:sit1(e3spast), ARG1(l4,x2), l14:on2(e4), ARG1(l14,e3),
ARG2(l14,x5), l9:CONJ, l5:some(x5), RSTR(l5,h6), BODY(l5,h7),
l6:table1(x6), qeq(h1,l1), qeq(h6,l6), in-g(l3,l1), in-g(l3,l2), in-g(l9,l4),
in-g(l9,l14), x0 = x1, x1 = x2, x5 = x6

3 An Architecture for RMRS Construction from Shallow
Grammars

We aim at a modular syntax-semantics interface for RMRS construction that can
be adapted to a wide range of existing shallow grammars, such as off-the-shelf
chunk parsers or probabilistic (non-)lexicalised PCFGs. Moreover, we aim at the
construction of underspecified, but maximally constrained (i.e., resolved) RMRS
representations from shallow grammars.

A unification-based account. Chunk parsers and PCFG parsers for senten-
tial structure do in general not provide functional information that can be used
for argument identification. While in languages like English argument identifica-
tion is to a large extent structurally determined, in other languages arguments are
(partially) identified by case marking. In case-marking languages, morphological
agreement constraints can yield a high degree of completely disambiguated con-
stituents, as shown by Hinrichs and Trushkina (2002) for German. That is, by
morphological disambiguation we can obtain maximally constrained identification
of arguments from shallow analyses (see also Müller, 2004). We therefore propose
a unification-based approach for RMRS construction, where agreement constraints
can perform morphological disambiguation, and thus partial (i.e., underspecified)
argument identification in case-marking languages.
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In addition, by interfacing shallow analysis with morphological processing,
we can infer important semantic features for referential and event variables, such
as PNG and TENSE information. Thus, morphological processing can also be
beneficial for languages with structural argument identification.

A reparsing architecture. In order to realise a modular interface to existing
parsers, we follow a reparsing approach: For semantics construction, we extract
constituency information from the output structure of a shallow parser, and deter-
ministically reparse the original input string, while applying RMRS construction
principles to the recomposed syntactic structures.

The advantages of a reparsing architecture—as opposed to a grammar with
integrated syntactic and semantic rules—are that modular semantics construction
rules can be adapted to the output structures of alternative existing parsers, in-
cluding statistical parsers. Similarly, modular semantics construction rules can be
ported to other languages, and applied to the output structures of existing chunkers
or parsers for such languages.

Constraint-based RMRS construction—using cascaded SProUT. We define
constraint-based principles for RMRS construction in a typed feature structure for-
malism. These semantics construction principles are applied to the (reparsed) syn-
tactic structures provided by shallow parsing. In the reparsing step the constraints
are resolved, to yield maximally specified RMRS representations.

The RMRS construction principles are defined and processed in the SProUT
processing platform (Becker et al., 2002; Krieger et al., 2004). The SProUT sys-
tem combines finite-state technology with unification-based processing. It allows
the definition of finite-state transduction rules that apply to (sequences of) typed
feature structures (TFSs), as opposed to atomic symbols. The left-hand side of
a transduction rule specifies a regular expression over TFSs as a (longest-match)
recognition pattern; the right-hand side specifies the output in terms of a typed fea-
ture structure. Regular expression operators are ? (optionality), ∗, + (Kleene star
and plus), and {n,m} (constrained iteration). Figure 1 displays a SProUT rule for
the recognition of an NP consisting of an optional determiner, any number of ad-
jectives and a noun. Coreferences (#) enforce unification of the referenced feature
values. In the example, this enforces agreement of determiner, adjective and noun.

np :> morph & [POS art, INFL [CASE #case, NUM #num, GEND #gend]]?
morph & [POS adj, INFL [CASE #case, NUM #num, GEND #gend]]∗
morph & [POS noun, INFL [CASE #case, NUM #num, GEND #gend]]

-> phrase & [CAT np, AGR [CASE #case, NUM #num, GEND #gend]].

Figure 1: Example of a SProUT rule (cf. Krieger et al., 2004).

The rewrite rules are interfaced with a hierarchy of typed feature structures. In
Figure 1, the rule is constrained to apply to feature structures of type morph; the
output structure is defined to be of type phrase. The corresponding hierarchy of
typed feature structures is specified separately from the rules.
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The SProUT system offers a number of special features that proved extremely
useful for our purposes.

Most importantly, the system has been extended to cascaded processing, such
that the output of a set of rule applications (viz., TFSs) can provide the input to
another set of rewrite rules, again on TFSs. This allows us to realise a cascade of
grammars for lexical and phrasal RMRS construction, which we describe in more
detail in Section 4.

Since SProUT operates on typed feature structures, we can define a hierarchy
of types that facilitates the concise definition of semantics construction rules.

In SProUT, several distinct rules can simultaneously apply to the same se-
quence of input items, as long as the same (maximal) sequence of structures is
matched. The output structures defined by the individual rules can then be unified,
by special interpreter settings. This allows us to state modular RMRS construc-
tion principles with general application conditions that interact to yield complete
RMRS structures.

The system offers a mechanism for rule prioritisation that implements defaults:
rules can be (strictly)1 ordered according to their priority, such that a rule with
lower priority can only apply in case no rule with higher priority could be applied
to the same input structure.

Finally, SProUT permits the definition of so-called functional operators to im-
pose additional constraints for the application of a rule. Functional operators may
extend the formal power of typed unification, and will be used for the implementa-
tion of constraining equations in argument identification rules (cf. Section 4.3).

Cascaded reparsing with SProUT. For cascaded reparsing, SProUT first per-
forms morphological lookup on the original input string, which yields as output a
list of TFSs of type morph. The morphological information is organised in a type
hierarchy with disjunctive subtypes to underspecify ambiguities of inflectional fea-
tures, e.g., case (see Krieger and Xu, 2003, and below).

The output sequence of morphological TFSs is input to the next cascade levels
that perform morphological disambiguation and phrase composition.

For cascaded reparsing, or phrase composition according to the output struc-
ture of a shallow (context-free) parser, we enrich the input TFSs with constituency
information that we extract from the parse tree for the corresponding input span:
for each node we extract a uniquely referring node identifier (ID), together with
the identifier (M-ID) and category (M-CAT) of its mother node. This implicitly en-
codes the necessary information about phrasal constituency that can be used to
guide phrase composition and concurrent semantics construction in reparsing with
SProUT. As unique node identifiers, we use word/phrase span information, as in-
dicated in Figure 2.2

1Extensions for specification of partial ordering of rules are under way.
2Alternatively, one could use character position spans for node identification.
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S1 7

NP1 3 VVFIN4 4 PP5 7

ART1 1 ADJA2 2 NN3 3 saß APPR5 5 ART6 6 NN7 7

ein dicker Kater auf der Matte

Figure 2: Indexed syntactic tree: Ein dicker Kater saß auf der Matte – A fat cat sat
on the mat.

phrase :> synsem & [NODE [M-ID #mid, M-CAT #mcat]]+
–> phrase & [NODE [ID #mid], [M-SYN [CAT #mcat]].

Figure 3: Reparsing rule.

A general reparsing rule, displayed in Figure 3, is applied to the enriched input
sequence of TFSs for lexical or phrasal nodes and produces as output a TFS for
the implicitly defined mother node. The rule specifies that for all nodes in the
matched input sequence,3 their mother node identifier and category features (M-ID,
M-CAT) must be identical, and defines the output (mother) node’s local identifier
and category feature (ID, CAT) by use of co-references (#mid, #mcat). Since the
system obeys a longest-match strategy, the regular expression is constrained to
apply to the same constituents as in the original parse tree.

Cascaded reparsing first applies to the sequences of leaf nodes that are pro-
vided by morphological processing. The output node sequence is enriched with
the phrase-building information from the original parse tree, and is input to the
phrase building and semantics construction rules. For phrase composition we de-
fine a cyclic cascade, where the output of a cascade is fed in as input to the same
rules. The cycle terminates when no more phrase building rules could be applied
to the input, i.e., the root category has been derived. This establishes a kind of
fixpoint construction.

Morpho-syntactic disambiguation. In reparsing, we define very general princi-
ples for morpho-syntactic agreement, by defining agreement between single daugh-
ter constituents and their mother node, for categories like determiner, adjective, or
noun (see Figure 4). This is in contrast to the usual definition of agreement rules
between siblings. Since in our reparsing approach constituency is already pre-
defined, the agreement constraints can be stated independently from precedence
patterns for the recognition of different types of NPs. Defining morphological
agreement independently for possibly occurring daughter constituents yields few
and very general (disjunctive) projection principles that can also apply to “unseen”
constituent sequences.

The rule in Figure 4 again exploits the longest-match strategy to constrain ap-
3with synsem a supertype of lex and phrase, see Section 4.1.
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agr :> lex & [NODE [M-ID #mid]]*
( lex & [NODE [M-ID #mid], M-SYN [CAT nn, AGR #agr]] |

lex & [NODE [M-ID #mid], M-SYN [CAT adja, AGR #agr]] |
lex & [NODE [M-ID #mid], M-SYN [CAT art, AGR #agr]] )
lex & [NODE [M-ID #mid]]*

–> phrase & [NODE [ID #mid], M-SYN [AGR #agr]].

Figure 4: Modular (disjunctive) agreement projection rules.

NP1 3[CASE nom & nom & nom acc dat]

ART1 1[CASE nom] ADJA2 2[CASE nom] NN3 3[CASE nom acc dat]

ein dicker Kater

Figure 5: Interaction of morphological constraints.

plication to the pre-defined constituents, by specifying coreferent M-ID features
for all nodes in the rule’s input sequence. In reparsing, the (possibly disjunctive)
morphological types in the output structure of the individual rule applications are
unified, yielding partially resolved inflectional features for the mother node. For
NP1 3 in Figure 2, e.g., we obtain CASE nom by unification of nom (from ART1 1

and ADJA2 2) and nom acc dat (from NN3 3), see Figure 5. This resolved case
value of the NP can be used for (underspecified) argument binding in RMRS con-
struction (as discussed in more detail in Section 4.3).

Architecture of the SProUT-XSLT RMRS cascade. SProUT cascades can be
defined using the declarative system description language SDL (Krieger, 2003).
The sequence of SProUT cascade stages described in this paper has been speci-
fied in SDL and integrated into the ‘Heart of Gold’ (HoG) NLP architecture of
Callmeier et al. (2004). HoG provides an XML-based architecture framework for
the integration of deep and shallow NLP components. The declaratively defined
SDL description of the cascade is compiled into a Java class which is integrated in
a HoG architecture instance as a sub-architecture module (Figure 7).

The cascade, displayed in Figure 6, consists of four SProUT grammar instances
with four interleaved XSLT transformations. The recursive application of phrase
composition rules is defined by means of a cyclic SDL star operator. XSLT is used,
e.g., to merge SProUT-generated structures with XML-encoded analyses of the
chunk parser Chunkie (Skut and Brants, 1998). Motivation for and further details
on XSLT transformation of typed feature structure representations are presented in
Schäfer (2004).
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chunkiermrs = ( sprout_rmrs_morph + xslt_pos_filter + sprout_rmrs_lex
+ ( xslt_nodeid_cat + sprout_rmrs_phrase )*
+ sprout_rmrs_final + xslt_fs2rmrsxml + xslt_reorder )

sprout_rmrs_morph = sdl.sprout.SproutModulesTextXml("rmrs-morph.cfg")
xslt_pos_filter = sdl.xslt.XsltModules("posfilter.xsl", "Chunkie")
sprout_rmrs_lex = sdl.sprout.SproutModulesXmlXml("rmrs-lex.cfg")
xslt_nodeid_cat = sdl.xslt.XsltModules("nodeinfo.xsl", "Chunkie")
sprout_rmrs_phrase = sdl.sprout.SproutModulesXmlXml("rmrs-phrase.cfg")
sprout_rmrs_final = sdl.sprout.SproutModulesXmlXml("rmrs-final.cfg")
xslt_fs2rmrsxml = sdl.xslt.XsltModules("fs2rmrsxml.xsl")
xslt_reorder = sdl.xslt.XsltModules("reorderrmrsdtrs.xsl")

Figure 6: SDL definition of the SProUT XSLT cascade.

Heart of Gold NLP architecture instance

input sentence Chunkie

nodeid_cat
SProUT SProUT

rmrs_final
XSLT SProUT XSLT XSLT XSLT

rmrs_phrase reorderfs2rmrsxmlrmrs_lex

RMRS result

pos_filter
SProUT
rmrs_morph

 . . . other NLP components . . .

SDL−defined SProUT−XSLT cascade sub−architectufe

Figure 7: SProUT XSLT cascade in a ‘Heart of Gold’ architecture instance.

4 Semantics Projection Principles for Shallow Grammars

4.1 A Shallow Feature Geometry

The type hierarchy we assume for RMRS construction from shallow grammars
specifies expressions as feature structures of type synsem, with three main features:
the syntactic features NODE and M-SYN, and the semantic feature RMRS (cf. Figure
8.a).

• NODE is used to maintain the constituent information that is needed for struc-
ture reparsing: It defines the identifier of the local node (ID) and the mother
node’s identifier and category (M-ID, M-CAT). These features are referred to in
the rules to restrict rule application to entire constituents.

• M-SYN values convey morpho-syntactic information, namely the category
(CAT) and the agreement features person, number, gender, and case (in AGR).
In addition, lexical signs store the results of morphological lookup as (typed)
inflectional features embedded under M-SYN (cf. section 4.2).

• RMRS, of type rmrs, introduces four features: HOOK stores semantic features
(a variable and a label) of a sign’s semantics that need to be externalised for
semantics composition; RELS is a set containing the elementary predications
(EPs) of the local sign; CONS is a set of scope constraints of type qeq, with
features HI (for the argument positions of quantifiers or other scope-taking
items) and LO (for the label of the scoped elementary predication); finally,
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(a) 


synsem

NODE




node
ID string
M-ID string
M-CAT cat




M-SYN




m-syn
CAT cat
AGR agr




RMRS




rmrs
HOOK ep
RELS set-of-ep
CONS set-of-qeq
ING set-of-ing







(b)
ep-argn

ep-arg0 ep-arg123

ep-arg12 ep-arg13 ep-arg23

ep-arg1 ep-arg2 ep-arg3

Figure 8: (a) The type synsem and (b) the type hierarchy for argument EPs.

ING is used to encode phrasal grouping of labels, as required for coordination
or adjectival modifiers, cf. (Copestake, 2003).

Elementary Predications. The basic units for semantics composition are ele-
mentary predications (EPs), of type ep. They (minimally) define a label LB (of type
lb) and a variable VAR. Variables are either of type hole (subject to qeq constraints)
or of type individual, which is again split into event-vars with tense and mood
information, and ref(erential)-vars, carrying PNG information.

We distinguish different subtypes of EPs: ep-rel introduces an additional fea-
ture REL that specifies the precise semantic relation by means of the lemma, or
in terms of general semantic relations (such as def rel, poss rel, etc.);4 ep-rstr
and ep-body for quantifiers introduce the features RSTR and BODY, respectively.
Arguments are encoded as a supertype ep-argn with subtypes for underspecified
argument types, as shown in Figure 8.b. Note that a general feature name ARGX,
introduced by ep-arg123, allows us to specify and refer to arguments in a uniform
way, irrespective of their (possibly underspecified) argument type. At the lexical
level, the ARG0 value of an ep-arg0 is coreferent with the externalized variable in
HOOK in most cases, depending on the lexical class.

Lexical and phrasal types. The type synsem is subdivided into lex and phrase
subtypes. While the latter is simply characterized as having a phrasal CAT value,
e.g., one of the atomic types np, vp, pp, ap, or s,5 the former expands to sub-
types corresponding to different word classes. These specify how the PoS-specific

4ep-rel again expands to several subtypes that correspond to (subclasses of) PoS of lexical items.
The PoS-specific subtypes are employed for the definition of PoS-specific semantic conditions in
lexical semantics construction rules (see below, Section 4.2).

5The category types are determined by the input parser’s phrasal category inventory.
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morpho-syntactic features (as defined by SProUT’s morphological type system in
the feature INFL) are mapped to the more general features AGR and CAT in our sign’s
M-SYN feature.

4.2 RMRS construction from lexical nodes

Interfaces for Morphological Lookup and PoS Filtering. The SProUT system
performs morphological lookup on the input string in order to retrieve informa-
tion about inflectional features (case, number, person, gender, mode, and tense),
lemmatization, and PoS.6 The output structures of morphological processing are
(sequences of) TFSs that are based on a hierarchy of (possibly disjunctive) morpho-
syntactic types.

Disjunctive types are used for underspecified representation of morphologi-
cal ambiguities (Krieger and Xu, 2003), instead of atomic disjunctions. Consider,
for instance, the German word “Mann” (man). This form is ambiguous in that
it expresses nominative, accusative or dative case—only genitive (“Mannes”) is
excluded. Instead of outputting three distinct structures, the morphological com-
ponent returns one TFS with the underspecified case value nom acc dat. Rules
for morphological agreement, such as the agreement rule in Figure 4, exploit type
unification to reduce this ambiguity. E.g., unification of nom acc dat with acc dat
yields the more restricted type acc dat.

As mentioned above, a general rule integrates the purely morphological infor-
mation provided by morphology lookup (structures of type morph) into the M-SYN
feature of lexical signs (cf. the feature geometry of Figure 8.a). The rule’s LHS
matches any structure of the pre-defined type morph and introduces it as the M-SYN
value of the lexical sign that is defined by the RHS of the rule.

morph-lookup :> morph & #1 -> lex & [M-SYN #1].

If morphological lookup comes across an unknown word, it returns a TFS not
of type morph, but of type token, with unspecified morphological features. The
following rule defines how to handle bare tokens:

token-lookup:> token & [SURFACE #1]
-> lex & [M-SYN [SURFACE #1,

STEM #1]].

This rule acts as a default rule with low priority. Its application is restricted to those
parts of the input which fail to match the LHS of the rule morph-lookup. Since there
is no morphological information to integrate, the token rule simply enriches the
lexical synsem with information about the word stem, which we define as identical
to the surface form.

6For German, SProUT uses the STTS tagset (Schiller et al., 1999), which supports fine-grained
distinctions between word classes. Many of these provide important semantic distinctions, such as
different types of pronouns or determiners; e.g., PDS for demonstrative pronouns as in “This is great.”
vs. PDAT for demonstrative determiners (“This book is great”).
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While morphological ambiguities within a given word class (e.g., noun or ad-
jective) are underspecified by means of disjunctive types, the system delivers dis-
junctive output structures for words that are ambiguous with respect to their PoS.
These disjunctions are preserved by the morph-lookup rule applications.

We cut down this type of ambiguity by interfacing the morphological analyses
with the categorial information from the original parse tree. We run an XSLT-
stylesheet on the rule output, which inserts the category defined by the parser into
the CAT feature of the lexical typed feature structures. Since inconsistent structures
cannot be matched by any rule, structures with incompatible category specifica-
tions are automatically filtered out in the application of the next set of rules.7

Moreover, interfacing morphologically enriched lexical structures with the
parser’s lexical categories provides important word class information for those
words that could not be morphologically analysed, and could only be integrated
by means of the default token-lookup rule. For these items, we choose the cate-
gory proposed by the shallow parser for further semantic processing.

Lexical RMRS conditions. Based on the morphologically enriched and PoS-
filtered structures, a second rule set introduces lexical RMRS conditions. The in-
dividual rules are specific for major PoS lexical classes, again with some special
subclasses as provided by the STTS tagset. As an example, we display the rule for
common nouns.

rmrs-noun:> lex & #lex & [M-SYN [CAT nn,
AGR [NUM #num, GEND #gend],
INFL infl noun & [STTS OPEN NOUN nn]]]

-> noun-lex & #lex &
[RMRS [HOOK ep & [LB #lb, VAR #var],

RELS { ep-rel-noun & [LB #lb],
ep-arg0 & [LB #lb,

ARG0 ref-var & #var &
[PNG [NUMBER #num,

GENDER #gend]]] }]].

Figure 9: Lexical RMRS conditions (common nouns).

The rule is restricted to apply to lexical signs of category type nn, with the appro-
priate nominal inflectional features under INFL.8 The RHS of the rule specifies the
set of EPs for the lexical sign in RELS: it introduces a noun relation (of type ep-
rel-noun) and a referential arg0-variable in ep-arg0, which is enriched with PNG
information from the agreement feature. This variable, and the RMRS label that
the two EPs share, constitute the semantic HOOK of the lexical sign.

7This presupposes an isomorphic mapping from PoS classes defined in the morphology to PoS
classes of the parse tree.

8In our implementation, these morphological constraints are factored out as special subtypes of
m-syn (here map-morph-nn). Instead of explicit statement of the morphological constaints, we can
thus refer to the appropriate map-morph-<pos> type to constrain the application of lexical RMRS
rules to specific word classes.
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Determination of the concrete contents of the RELS feature at this stage cru-
cially depends on the PoS.9 The lexical rules for quantifiers, for instance, supply
the appropriate EPs of types ep-rstr and ep-body; possessives introduce an ep-rel
for the possessive relation, etc.

The output of this level of lexical processing yields RMRSs of the most basic
type: Sets of isolated EPs as they can be obtained from a PoS tagger. This bag of
“lexical RMRSs” provides the input for the subsequent cascade stages that perform
phrasal RMRS composition.

4.3 Content projection principles

RMRS Conditions: Lists vs. Sets. An important issue, in our architecture for
semantic composition, is the formal representation of the flat (R)MRS representa-
tions. While in theory the values of RELS and CONS are conceived of as sets (or
bags), current implementations of typed feature structure formalisms usually do not
offer an implementation of sets. MRSs constructed from deep HPSG grammars are
therefore represented and processed as (difference) lists.

There have been several approaches to (finite) sets and set unification, some of
them extensions to the standard Kasper-Rounds logic for feature structures (e.g.,
Rounds (1988) or Pollard and Moshier (1990)). Most of them have not been pur-
sued, either due to the the complex nature of the mathematical apparatus, or due to
the theoretical and practical complexity (EXPTIME and beyond).

In our approach to semantics construction, independent principles are tailored
to specific aspects of semantic composition (e.g., content projection, scoping con-
straints, or variable binding). Several of these modular principles will apply to
the same constituents, and introduce their corresponding semantic constraints. The
output structures defined by the individual rules are unified. If the RMRS RELS and
CONS features were represented as lists, unification of the output of modular se-
mantics construction rules would in general fail, because list unification is defined
by position, and we cannot foresee the relative ordering of semantic predications
when different rules apply independently to the same constituent. In our approach,
then, we need to represent semantic constraints in RELS, CONS and ING as sets.

In the SProUT system a cheap form of sets (viz. bags) has been implemented
that performs collection, but not unification of elements into a set (Krieger et al.,
2004). That is, the union of two sets S1 = {a1, b1} and S2 = {a2, b2}will yield the
set S1 ∪ S2 = {a1, b1, a2, b2}, whether or not a1 and a2 or b1 and b2 are unifiable,
structurally equivalent, or even identical.

This extension allows us to represent the RMRS features RELS, CONS and
ING as sets, and thus to state semantics projection principles in a modular way. The
output of the individual semantics projection principles can be unified by set union.
To account for the missing unifiability test over set elements, we need to ensure

9As a consequence, we obtain PoS-based “default” lexical RMRS conditions for those items that
could not be morphologically analysed, but were processed by the token-lookup rule and interfaced
with the PoS categories of the parse tree.
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that elementary predications are only introduced once. In other words, they need
to be sufficiently specified when they are first introduced into the set of semantic
constraints. Since RMRS elementary predications are minimal conditions, this can
be ensured by appropriate definition of the semantics construction principles.

Structure reparsing for semantic composition. The input to phrasal RMRS
composition are sequences of TFSs of type lex with isolated lexical RMRS repre-
sentations, as described in Section 4.2.

The semantic composition of phrases is driven by a general reparsing rule (see
Section 3, Figure 3). For each (recursive) application of the phrasal composition
rules, the sequence of input TFSs (i.e., the structures built by the previous cascade
stage) is enriched with constituency information (ID, M-ID and M-CAT features of
NODE) that we extract from the original parse tree by use of an XSLT-stylesheet.
By reference to the M-ID features, and given that the system applies longest match,
the reparsing rule matches the constituents predicted by the input shallow syntactic
parser.10

This reparsing rule is now extended with additional constraints to define se-
mantic composition of the matched phrases. This includes principles for the pro-
jection of semantic conditions from daughter constituents, as well as principles for
variable and argument binding, and scopal constraints.

Basic content projection rule. The content projection rule (Figure 10) assem-
bles the elements of the RMRS RELS, CONS and ING features of all daughter con-
stituents. This is specified by a special collection operator %{feat} which refers
to the corresponding values %feat of the matched constituent phrases. The result
structure is defined as the union of the matched %feat values.

While a classical list representation would require multiple content projection
rules—one for each “arity” of daughter constituents—the set representation en-
ables us to state a single content principle that matches an arbitrary number of
daughter constituents. The rule applies to any number of daughter constituents and
yields the union of the referenced set-valued features as the semantic value for the
mother constituent’s feature, here RELS, CONS and ING.

cont proj :> synsem & [NODE [M-ID #mid],
RMRS [RELS %rels, CONS %cons, ING %ing]+

-> synsem & [NODE [ID #mid],
RMRS [RELS %{rels}, CONS %{cons}, ING %{ing}]].

Figure 10: Content projection rule.

The content projection principle is applied to phrasal constituents, and assembles
all semantic conditions defined by the daughter constituents to (recursively) define
the semantics of phrases. In addition, we define separate principles that conspire

10An extended version of the rule in Figure 3 accounts for embedded constituents.
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to introduce variable and argument binding as well as scopal constraints that can
be defined on the basis of syntactic and morpho-syntactic information.

Variable Binding. Binding of referential variables is defined via the semantic
HOOK feature, which is used to externalise variables in compositional semantics
construction (see Copestake et al., 2001). As we saw in Section 4.2, in lexical
RMRSs the HOOK’s variable is in general defined as the internal (ARG0) variable,
while in certain cases, such as with adjectives, it is the ARG1 variable that is ex-
ternalised for referential binding.

The variable binding rule for noun phrases, displayed in Figure 11, refers to
the HOOK variables of all daughter constituents of the NP. The rule constrains the
referenced variables of all daughters (and all coreferential variables in their lexi-
cally defined elementary predications) to be equated. In addition, the rule sets a
new HOOK variable for external binding of the phrase, which in the case of noun
phrases is identical to the daughter constituents’ equated HOOK variables.11

bind var :> synsem & [NODE [M-ID #mid, M-CAT np], RMRS [HOOK [VAR #var ]]]+
-> phrase & [NODE [ID #mid], RMRS [HOOK [VAR #var]]].

Figure 11: Variable binding.

Scope Constraints. The definition of scope constraints by qeq-constraints in
CONS is equally mediated by the HOOK feature. The restrictor argument of quan-
tifiers, for instance, takes scope over the head noun. The corresponding qeq con-
straint relates the restrictor hole argument of the quantifier and the label of the noun
head in a qeq relation. In Figure 12 we display the rule for the introduction of the
quantifier’s qeq constraint, along with the lexical rule for quantifiers.
In the rmrs-quant rule, the quantifier externalises its ARG0 referential variable as
the HOOK’s variable (to be used for referential binding), and in addition exter-
nalises its main label as the HOOK’s LB value. These HOOK features allow us
to introduce the quantifier scoping conditions in the q scope rule. The rule ap-
plies to phrases that include a quantifier followed by a noun head. Their respective
main labels, #noun lb and #q lb, are externalised as HOOK labels, and can thus
be used to introduce the corresponding scope conditions into the phrase’s RMRS
representation: we introduce an elementary predication ep-rstr for the quantifier’s
restrictor argument and a qeq-constraint in CONS, which defines the label of the
noun, #noun lb, to be subordinated to the quantifier’s restrictor argument #rstr.

11For flat PP structures (as they are typically assumed in shallow parsing, see the tree in Figure 2),
we need to separate the binding of referential variables and the definition of the PP’s external HOOK
variable. Here, the rule restricts the equation of the daughter’s variables to the non-prepositional
daughters, while the HOOK of the phrase is now defined by the preposition’s lexical HOOK variable.

bind var :> prep-lex & [NODE [M-ID #mid, M-CAT pp], RMRS [HOOK [VAR #prep var]]
synsem & [NODE [M-ID #mid], RMRS [HOOK [VAR #var ]]]*
synsem & [NODE [M-ID #mid], RMRS [HOOK [VAR #var ]]]

-> phrase & [NODE [ID #mid], RMRS [HOOK [VAR #prep var]]].
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q scope :> quant-lex & [NODE [M-ID #mid], RMRS [HOOK [LB #q lb]]]
synsem & [NODE [M-ID #mid]]*
noun-lex & [NODE [M-ID #mid], RMRS [HOOK [LB #noun lb]]]

-> phrase & [NODE [ID #mid], RMRS [RELS { ep-rstr & [LB #q lb, RSTR #rstr] },
CONS { qeq & [HI #rstr, LO #noun lb] } ]].

rmrs-quant:> lex & #lex .....
-> quant-lex & #lex &

[RMRS [HOOK [VAR #var, LB #lb]],
RELS {ep-rel & [LB #lb],

ep-arg0 & [LB #lb, VAR #var],
ep-body & [LB #lb, BODY hole] } ]].

Figure 12: Scope constraints (quantifiers).

Argument identification and argument binding. Finally, we define semantic
composition rules for the binding of arguments. As discussed in Section 3, argu-
ment identification may be marked structurally or morphologically.

In our approach, we can define argument binding rules by way of structural
constraints for languages like English, as illustrated in Figure 13.12 The rules iden-
tify structural configurations for a VP-external or VP-internal NP, respectively. By
way of morpho-syntactic features for active/passive voice (which can be computed
by independent morpho-syntactic rules), we can identify or partially restrict the
type of argument to be bound.

arg-ident-np-vp :> synsem & [M-SYN.CAT np,
RMRS.HOOK.VAR #argvar]

synsem & [M-SYN [CAT vp, PASSIVE -],
RMRS.HOOK.LB #lb]

-> synsem & [RMRS.RELS {ep-arg1 & [LB #lb, ARGX #argvar]}].

arg-ident-v-np :> synsem ∗

synsem & [M-SYN [CAT verb, PASSIVE -],
RMRS.HOOK.LB #lb]

synsem ∗

synsem & [M-SYN.CAT np,
RMRS.HOOK.VAR #argvar]

synsem ∗

-> synsem & [RMRS.RELS {ep-arg23 & [LB #lb, ARGX #argvar]}].

Figure 13: Structural identification of arguments.

The first rule identifies a VP-external NP in active voice and introduces an elemen-
tary predication ep-arg1 which binds the NP’s HOOK variable #argvar as the value
of the feature ARGX. The second rule illustrates a case of underspecified argument
binding. A VP-internal NP argument (in active voice) may be a direct or indirect
argument, depending on the verb’s subcategorisation frame. Without lexical infor-

12We omit the NODE.M-ID constraints for reparsing here and in the following rules.
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mation, we cannot resolve this ambiguity, hence the rule introduces an elementary
predication for underspecified argument binding, ep-arg23.

For languages with morphological identification of arguments, such as Ger-
man, we can define argument binding principles that make use of morpho-syntactic
constraints, most prominently case. In reparsing we apply agreement rules for mor-
phological disambiguation that lead to maximally resolved case features, in terms
of disjunctive types (cf. Section 3, Figure 4).

arg-ident-nom :> synsem∗
synsem & [M-SYN [CAT np, AGR.CASE #case],

RMRS.HOOK.VAR #argvar]
synsem∗
synsem & [M-SYN [CAT verb, PASSIVE -],

RMRS.HOOK.LB #lb]
synsem∗

-> synsem & [RMRS.RELS {ep-arg1 & [LB #lb, ARGX #argvar]}],
where type eq(#case, nom).

arg-ident-nom-acc :> synsem∗
synsem & [M-SYN [CAT np, AGR.CASE #case],

RMRS.HOOK.VAR #argvar]
synsem∗
synsem & [M-SYN [CAT verb, PASSIVE -],

RMRS.HOOK.LB #lb]
synsem∗

-> synsem & [RMRS.RELS {ep-arg12 & [LB #lb, ARGX #argvar]}],
where type eq(#case, acc nom).

Figure 14: Morphological identification of arguments.

The rules in Figure 14 apply to sequences of verbs and NP constituents within a
phrasal constituent. In the first rule, the case value of the NP constituent is con-
strained to be of type nom, we therefore introduce an EP ep-arg1 to bind the refer-
ential variable of the NP (provided by the HOOK variable #argvar). In the second
rule we identify an NP constituent with CASE of type nom acc—the variable is
thus bound by way of an underspecified argument binding constraint ep-arg12.13

Note that the rules make use of a so-called “functional operator” to test for
type equality: type eq(#case, nom acc). Functional operators are a kind of proce-
dural attachment, which allows us to perform tests that extend the power of type
unification. The rules need to distinguish fully disambiguated as opposed to un-
derspecified CASE values in order to introduce the appropriate EP argument type.
With type unification, however, we cannot test for type equality without stating
type equality.

That is, if in the first rule we were to constrain the case value of the matched
phrase by the specification CASE nom, a structure with ambiguous case, such as
nom acc could be matched and erroneously disambiguated to nom. Vice versa,

13Disjunctive versions of these rule take care of alternative head-complement serialisations.
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the second rule, if specified to match phrases with ambiguous case, e.g., CASE
nom acc, would also apply to fully disambiguated phrases of type nom.

The SProUT system enables us to define a functional operator for testing type
equality—which in this case can be implemented by way of a simple test on string
equality.

As with other semantics construction rules, the rules for argument identification
are stated independently for specific arguments or configurations of arguments.
The output structures of the individual rules are unified, that is, the corresponding
argument identification constraints are assembled in the set-valued RELS feature of
the resulting phrases.

Content projection from flat structures. A challenge for principle-based
RMRS construction from shallow grammars are their flat syntactic structures. They
do not, in general, employ strictly binary structures as assumed in HPSG (see
e.g., the semantics construction principles in Flickinger et al. (2003)). Constituents
may also contain multiple heads, as with flat PP structures (cf. Figure 2). Finally,
chunk parsers do not resolve phrasal attachment, and thus provide discontinuous
constituents to be accounted for.

In our reparsing approach for semantics construction, the unification-based pat-
tern matching mechanism of the SProUT system provides elegant means to over-
come such difficulties. Independent rules can apply to the same phrases to handle
individual aspects of semantics construction. Thus, we can state rules that apply
to individual constituents of flat structures, irrespective of the number of phrasal
constituents. This enables us to state concise rules for morphological agreement
and basic content projection. Similarly, we define independent rules to introduce
constraints for scopal relations and argument binding.

For multiple-headed constituents we define special rules with adjusted condi-
tions. For instance, we defined a special bind var rule for flat PPs (cf. footnote 12)
which combines the PP-rule’s definition of the phrasal HOOK and the NP-rule’s
coreference constraints for the binding of referential variables. Due to the modular
design of the semantics construction principles and the regular expression-based
definition of rules, only minor adjustments are needed to account for flat PPs in the
definition of scope constraints, by admitting an optionally preceding preposition.

A more intricate problem are discontinuous structures for complex NP or PP
structures as they are delivered by chunk parsers, where phrasal attachments are
not resolved. While the basic internal semantic construction rules for NPs and
PPs are unaffected by the discontinuous phrasal structures, the argument binding
rules must account for the uncertainty of phrasal attachment. Here, we propose to
generate in-group conditions that account for possible attachments, along the lines
of (Frank, 2003).

Finally, semantics construction from shallow grammars is intrinsically affected
by the non-lexicalised nature of these grammars. Due to the lack of lexical subcat-
egorisation information, the principles for semantic composition—especially ar-
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gument binding—differ significantly from the argument binding principles of deep
grammars. While in deep grammars, the binding of arguments can be hard-wired in
semantic composition rules, by reference to lexically defined argument “slots” (cf.
Copestake et al., 2001), argument binding rules for shallow grammars define con-
straints on co-occurring constituents to identify their argument status, and generate
(potentially underspecified) constraints for argument binding. A natural extension
for this type of syntax-semantics interface is the integration of external subcate-
gorisation resources that can be consulted to further constrain the principles for
argument binding.

5 Conclusion

We presented an architecture for a constraint-based syntax-semantics interface for
RMRS construction from shallow grammars. We proposed a reparsing architecture
that permits flexible adaptation to the output of different types of shallow parsers,
and argued for a unification-based approach to semantics construction, to account
for languages that identify arguments on the basis of morphological constraints.
Our reparsing approach permits the definition of modular, interacting semantics
construction rules that can be tailored to specific properties of the underlying gram-
mars.

We presented an implementation on the basis of the SProUT processing plat-
form (Drozdzynski et al., 2004; Krieger et al., 2004), a finite-state transduction
system that operates on sequences of typed feature structures. The combination
of a (cascaded) regular expression-based transduction system with typed feature
structure unification turned out to provide a powerful and flexible tool for the def-
inition of complex, but modular semantics construction constraints. In particular,
we have argued that the availability of sets as a basic data type is a prerequisite for
the implementation of modular semantics construction principles. The usage of a
typed feature structure formalism with type inheritance permits concise definition
of semantics construction principles.

Compared to the RMRS construction method that Copestake (2003) applies to
the English PCFG parser of Carroll and Briscoe (2002), the main features of our
approach are (i) argument identification via morphological disambiguation and (ii)
definition of modular semantics construction principles in a typed unification for-
malism. Similar architectures for reparsing have been proposed in earlier work for
the generation of LFG f-structures from the output of context-free (PCFG) parsers
or treebanks (cf. Frank, 2000; Sadler et al., 2000; Frank et al., 2003b; Cahill et al.,
2002; Frank, 2003). Finally, similar ideas that aim at a principled account for
RMRS construction from shallow grammars have been independently explored in
recent work of Lascarides (2003).

In future work, we will compare our semantics construction principles to the
general model of Copestake et al. (2001), a formal framework that was designed
for principle-based semantics construction from deep grammars.
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Skut, W. and Brants, T. 1998. Chunk tagger: statistical recognition of noun phrases. In
ESSLLI-1998 Workshop on Automated Acquisition of Syntax and Parsing, Saarbrücken.

413


