
Lexical Resource Semantics: From
theory to implementation

Gerald Penn
University of Toronto

Frank Richter
Universität Tübingen

Proceedings of the 11th International Conference on
Head-Driven Phrase Structure Grammar

Center for Computational Linguistics, Katholieke Universiteit Leuven

Stefan Müller (Editor)

2004

Stanford, CA: CSLI Publications

pages 423–443

Penn, Gerald & Frank Richter. 2004. Lexical Resource Semantics: From theory
to implementation. In Stefan Müller (ed.), Proceedings of the 11th International
Conference on Head-Driven Phrase Structure Grammar, Center for Computational
Linguistics, Katholieke Universiteit Leuven, 423–443. Stanford, CA: CSLI Publi-
cations. DOI: 10.21248/hpsg.2004.24.

https://orcid.org/0000-0003-3553-8305
https://orcid.org/0000-0003-1929-5489
http://doi.org/10.21248/hpsg.2004.24
http://creativecommons.org/licenses/by/4.0/

Abstract

This paper summarizes the architecture of Lexical Resource Semantics
(LRS). It demonstrates how to encode the language of two-sorted theory
(Ty2; Gallin, 1975) in typed feature logic (TFL), and then presents a for-
mal constraint language that can be used to extend conventional description
logics for TFL to make direct reference to Ty2 terms. A reduction of this
extension to Constraint Handling Rules (CHR; Frühwirth and Abdennadher,
1997) for the purposes of implementation is also presented.

1 Introduction

Lexical Resource Semantics (LRS) has already been used in analyses of various
syntactic and semantic phenomena on paper,1 but until now it did not have a com-
putational implementation, in part because standard typed feature logic (TFL) is
so ill-suited to the job of serving as the formal basis of a computational language
for describing semantics. All is far from lost, however; it turns out to be relatively
simple to extend a TFL-based description language to incorporate the primitives
required, which we believe will have application to computational semantics ex-
tending well beyond LRS. Those primitives are also described here.

Implementations of computational semantics can be accomplished in TFL —
Minimal Recursion Semantics (MRS; Copestake et al., 2003) stands as one partic-
ularly well-known example of this. Even in MRS, however, structure that encodes
embedding constraints (the so-called qeq constraints) must be represented along-
side the basic components of the semantic terms being constructed, and several
necessary “bookkeeping” principles to address free variables, acyclicity etc. must
either be stated in the grammar alongside the real principles that are the subject
of linguistic investigation, or (as is conventional in MRS) relegated to an extra-
grammatical resolution procedure that exists outside TFL altogether. TFL’s own
semantic type system also does not provide semantic typing beyond ����� , and so
the richer typing required by all non-trivial theories of semantical form must either
be structurally encoded into the object language or forgotten entirely. Indeed, no
MRS-based grammar to our knowledge avails itself of any true semantic typing
beyond animate, time, event and other ����� sorts that are syntactically convenient
for the English Resource Grammar.

This is not to say that LRS is merely an alternative to MRS. In some respects,
they are simply incomparable. MRS also has no model-theoretic interpretation,
serving instead as a sort of front-end for “the real semantics” that is deemed to be�

We are greatly indebted to Manfred Sailer for his co-development of LRS, and the insight-
ful feedback he has provided, arising from his ongoing grammar development work with this
implementation.

1These include: negative concord in Polish, sentential (interrogative) semantics in German, the
scope of adjuncts in Dutch, the (past) tense system of Afrikaans, and negation in Welsh. See Richter
and Sailer (2004) and the references cited therein.

424

too impractical for the rapid development of large grammars. Parts of the present
proposal are probably better thought of as an alternative to the Constraint Lan-
guage for Lambda Structures (CLLS; Egg et al., 2001), a constraint language over
lambda-term trees with linguistically motivated constraints. CLLS’s description
language, however, has taken shape around a very orthodox view of the syntax-
semantics interface as a set of translation rules that augment phrase structure. In
our view, pace Egg and Erk (2002), making this suitable to HPSG requires more
than using typed feature structures in place of atomic categories. Many seman-
tic principles, just as many syntactic principles, are better expressed as univer-
sally quantified constraints, and a semantical description language must provide
the primitives necessary to accommodate this. CLLS also takes the very tradi-
tional view that semantic composition proceeds entirely through beta-reduction. In
CLLS, this view brings a certain amount of explicit overhead into the grammar too,
in the form of explicit links between lambdas and bound variables. Like MRS and
many other underspecified approaches, however, we have been forced to abandon
it in recognition of the abundance of concord, discontinuity and proper naming
effects from natural language with which it seems irreconcilable.

Section 2 introduces the semantic intuitions behind LRS and the principles that
institutionalize them. Section 3 provides further justification (in brief) through
some examples of difficult logical form constraints that they enable us to express.
Section 4 then presents a constraint language that directly extends standard models
of typed feature logic to incorporate Ty2 terms, and shows how to straightforwardly
implement this extension using Constraint Handling Rules (CHR; Frühwirth and
Abdennadher, 1997) on top of the TRALE system (Penn, 2004).

2 LRS: Fundamental Principles

Although LRS was originally conceived of as a framework-dependent improve-
ment on Flexible Montague Grammar (Hendriks, 1993) implemented within HPSG,
it has moved beyond a reconstruction of the Montagovian tradition within TFL.
With its combination of techniques derived from model theoretic semantics in the
Montagovian tradition, Logical Form (LF) semantics in the generative tradition
(von Stechow, 1993), and underspecified processing in computational semantics,
LRS now merges insights from several linguistic traditions into a very expressive
but computationally feasible framework for natural language semantics.

The architecture of LRS envisages underspecified processing as mediated on
the syntactic side by TFL descriptions, and on the semantic side by expressions
from a term description language which comprises the necessary devices for scope
underspecification as developed in computational semantics. The guiding assump-
tions behind LRS are that: (a) all semantic and syntactic idiosyncrasies are lexical
(including construction type idiosyncrasies), and (b) there is no non-functional se-
mantic contribution from outside of the lexicon. LRS distinguishes between lexi-
cal semantics and compositional semantics. Lexical semantics remains under the

425

CONTENT attribute. CONTENT values are subject to theories of linking, of semantic
selection and of HPSG’s traditional BINDING THEORY. Compositional semantics,
on the other hand, is located in the value of a new attribute LF of signs, and is thus
not visible to syntactic and semantic selection by heads. An interface theory which
links certain components of the local content to certain parts of the compositional
semantics allows for some amount of interaction, such as the lexical selection of
the semantic variables of arguments by syntactic heads.

In what follows, we discuss only compositional semantics.2 In Section 2.1 we
show how to encode the language of two-sorted theory (Ty2; Gallin, 1975) in TFL.
This encoding then serves to illuminate the connection between LRS and HPSG
in Section 2.2, in which we discuss the constraints which constitute the semantic
composition mechanism of LRS. In our computational implementation of LRS
(Section 4), the encoding part of the theory disappears entirely and is replaced by
providing the terms of Ty2 as first class citizens in the denotation of an appropri-
ately extended description language. The semantic composition mechanism will
remain effectively unchanged, however.

2.1 Specification of Ty2

The purpose of this section is to demonstrate how Ty2 can be encoded in a par-
ticular version of TFL, Relational Speciate Re-entrant Language (RSRL). Readers
not interested in the technical details might skip this section and proceed with Sec-
tion 2.2.

A specification of Ty2 needs an appropriate signature and a set of constraints
which denotes models whose objects correspond to the natural numbers (used as
indices of variables and non-logical constants), the types, and the well-formed ex-
pressions of Ty2. The signature, �	��
� , is shown in Figure 1. It must be part of
any signature of a grammar specification in TFL using Ty2 for semantic repre-
sentations. The sorts, attributes, and relation symbols in ����
� will be explained
together with the principles which enforce the well-formedness of the Ty2 expres-
sions in grammar models. They are shown in (1).

(1) a. The NATURAL NUMBERS PRINCIPLE:

integer � ��� x �
zero �

b. The COMPLEX TERM PRINCIPLES:

application � ���� TYPE 2

FUNCTOR TYPE � IN 1
OUT 2 �

ARG TYPE 1

����� abstraction � ���� TYPE � IN 1
OUT 2 �

VAR TYPE 1
ARG TYPE 2

�����
2See (Sailer, 2004) for a discussion and empirical motivation of the architecture of local semantics

in LRS.

426

equation � �� TYPE truth
ARG1 TYPE 1
ARG2 TYPE 1

�� negation � � TYPE truth
ARG TYPE truth �

l-const � �� TYPE truth
ARG1 TYPE truth
ARG2 TYPE truth

�� quantifiers � � TYPE truth
SCOPE TYPE truth �

c. The TY2 NON-CYCLICITY PRINCIPLE:3

ty2 � �
1 � �"!$# �&% 1 �('''*),+.- ��
�0/�1 � 2 ty2-component 3465 1 7 1

d. The TY2 FINITENESS PRINCIPLE:

ty2 � �
1
�

2 8 ty2-component 3 2 5�4 7 � member 8 2 5 1
�
chain �69:9

e. The TY2 IDENTITY PRINCIPLE:

ty2 � �
1
�

2 3 copy 3 1 5 2 7 �
1 ; 2 7

f. The TY2-COMPONENT PRINCIPLE:�
1
�

2

<===> ty2-component 3 1 5 2 7@?<=>
1 ; 2 A!CB � 3 D 2

�E%
3 �GF

ty2-component 3 1 5 3 7IH ''')J+.- ��
�LKNMPOQ MPOOOQ
g. The COPY PRINCIPLE:�

1
�

2

<====> copy 3 1 5 2 7R?<==> !S# 1
�ET �UF 2

�&T �V'''XWY+.Z ��
�[/\F] B � 3 D 1
�E%

3 � ��
4 8 2

�&%
4 ��F copy 3 3 5 4 7 9 H '''),+^- ��
�_K MPOOQ M OOOOQ

h. The SUBTERM PRINCIPLE:�
1
�

2 D subterm 3 1 5 2 7@? D 1
�
me �`F 2

�
me �aF

ty2-component 3 1 5 2 7 HbH
The meaningful expressions of Ty2 are simple or complex expressions in the

denotation of the sort me. Objects in the denotation of me have an attribute TYPE,
whose value indicates the type of the expression. If it is a simple expression (a
variable or a non-logical constant), it is indexed by a natural number, which is the
value of the attribute NUM-INDEX.

The NATURAL NUMBERS PRINCIPLE, (1a), guarantees the correspondence of
objects in the denotation of integer to the natural numbers. An integer configuration
in models of c ��
� is either a zero entity or a non-zero entity on which a term
consisting of a finite sequence of PRE attributes is defined whose interpretation on
the non-zero entity yields an entity of sort zero. The number of PRE attributes in

3The symbol dfehgji denotes the set of attributes of the signature klehgji . Similarly, mlehg*i in (1g)
denotes the set of maximally specific sorts of klehgji .

427

ty2
me TYPE type

variable NUM-INDEX integer
constant NUM-INDEX integer
application FUNCTOR me

ARG me
abstraction VAR variable

ARG me
equation ARG1 me

ARG2 me
negation ARG me
l-const ARG1 me

ARG2 me
disjunction
conjunction
implication
bi-implication

quantifiers VAR variable
SCOPE me

universal
existential

type
atomic-type

entity
truth
w-index

complex-type IN type
OUT type

integer
zero
non-zero PRE integer

Relations
append/3
copy/2
member/2
subterm/2
ty2-component/2

Figure 1: The signature �V��
� for a grammar of Ty2 expressions

428

this term corresponds to the natural number represented by the configuration under
the non-zero entity.

The six COMPLEX TERM PRINCIPLES, (1b), are responsible for the proper
typing of complex Ty2 expressions. These are the application of a functor to
an argument (�)@npo"qsr o�t 3*u o q 7 1 o), lambda abstractions (8wvyxyz r o q|{) o 9 n}o"q~r o�t), equations
(3) o ; u o 7P�), negated expressions (3 2) �h7��), expressions formed from two mean-
ingful expressions by conjoining them with a logical connective (e.g., 3) � FUu � 7 �),
and quantificational expressions (e.g., 3 � x z r o) ��7��). In models of the TFL grammar
the correct typing of the meaningful expressions, indicated in the examples given
in parentheses with the type � (for truth) and the meta-variable � , is guaranteed by
the COMPLEX TERM PRINCIPLES.

The remaining principles fall in two groups: the task of the principles (1c)–(1e)
is to guarantee the well-formedness of the ty2 configurations in grammar models
in the sense that all all ty2 configurations correspond to Ty2 expressions (or nat-
ural numbers and types); the remaining three principles, (1f)–(1h), determine the
meaning of relation symbols which are needed either in the preceding three princi-
ples or in Section 2.2 in the composition principles of LRS. According to (1f) the
relation ty2-component holds between each pair of Ty2 objects 1 and 2 such
that either 1 and 2 are identical or 1 is a component of 2 (i.e., 1 can be reached by
starting from 2 and following a finite sequence of attributes). With (1g), two Ty2
objects 1 and 2 in an expression are in the copy relation iff the configurations of
objects under them are isomorphically configured: they all have the same attributes
and corresponding attribute values of the same sorts. The subterm relation, de-
termined by (1h), will be particularly important in Section 2.2. It holds between
each pair of me objects 1 and 2 iff 1 is a subterm of 2 . For perspicuity we will use
an infix notation below and write ‘ 1 � 2 ’ for subterm 3 1 5 2 7 . The append and
member relation symbols, which also belong to the signature ����
� in Figure 1,
receive their usual interpretation. We omit the principles defining their intended
meaning.

The TY2 NON-CYCLICITY PRINCIPLE, (1c), excludes the possibility of cyclic
term configurations. Cyclic terms (and types) are terms which contain themselves
as components. Since it is not clear what cyclic configurations of this kind should
correspond to in two-sorted type theory, they have to be excluded from our models.
The TY2 FINITENESS PRINCIPLE, (1d), uses the finiteness of chains in RSRL to
enforce the finiteness of ty2 configurations. The last principle, the TY2 IDENTITY

PRINCIPLE in (1e), enforces a kind of extensionality in our models of Ty2 expres-
sions. It requires that any two isomorphic subconfigurations in a ty2 configuration
be actually identical. For example, if the first variable of type � , x(� r�� , occurs more
than once in a Ty2 expression, its corresponding model (as determined by our con-
straints) will contain exactly one configuration of objects representing x(� r�� .4

4For an extensive discussion and concrete examples of models, see (Richter, 2004). Sailer (2003)
proves that the RSRL specification of Ty2 sketched here is correct.

429

2.2 Semantic Composition

For the purpose of illuminating the connection between LRS and HPSG in a famil-
iar way, one can think of LRS in terms of a simple TFL specification. The signature
of the RSRL encoding of an LRS grammar contains the following attributes, sorts
and appropriateness specifications:

(2) The sort lrs (LF value of signs)

lrs EX(TERNAL-)CONT(ENT) me
IN(TERNAL-)CONT(ENT) me
PARTS list(me)

From the previous section we know that the objects in the denotation of the
sort me are the elements of the set of well-formed expressions of Ty2. The crucial
difference between systems such as Flexible Montague Grammar and LRS is that
the former employs the lambda calculus with (intensional) functional application
and beta-reduction for semantic composition. Semantic composition in LRS builds
on a tripartite distinction between internal content, external content and the seman-
tic contribution(s) of a sign to the overall semantic representation of an utterance.
While external and internal content are substantive concepts, the representation for-
mat of PARTS as a list of mes is an artifact of the LRS encoding in TFL. Rather than
thinking of PARTS values as lists of expressions, it is more accurate to view them
as the specification of those nodes of the term graph of a Ty2 expression which are
contributed to the meaning of the natural language expression by the given sign.
Only the topmost node of each element on PARTS counts as being contributed.

The internal content of a sign is the scopally lowest semantic contribution of the
semantic head of the sign. Its membership in PARTS characterizes it as a necessary
contribution of meaning to each syntactic head.

(3) The INCONT PRINCIPLE (IContP):
In each lrs, the INCONT value is an element of the PARTS list and a compo-
nent of the EXCONT value.

lrs � <> �� EXCONT 1
INCONT 2
PARTS 3

�� F member 3 2 5 3 7 F 2 � 1 MQ
The external content of a sign is the meaning contribution of its maximal pro-

jection to the meaning of the overall expression. When a sign enters into a syntactic
construction as a non-head, its external content must have been contributed in the
completed syntactic domain:

(4) The EXCONT PRINCIPLE (EContP):

a. In every phrase, the EXCONT value of the non-head daughter is an ele-
ment of the non-head daughter’s PARTS list.

phrase � � � NH-DTR LF � EXCONT 1

PARTS 2 ��� F member 3 1 5 2 7��
430

b. In every utterance, every subexpression of the EXCONT value of the utter-
ance is an element of its PARTS list, and every element of the utterance’s
PARTS list is a subexpression of the EXCONT value.

u-sign � �
1
�

2
�

3
�

4<=> � � LF � EXCONT 1
PARTS 2 �|� F 3 � 1 F member 3 4 5 2 7h� �3 member 3 3 5 2 7 F 4 � 1 7 MPOQ

The external content value of an utterance is its logical form in the traditional
sense. According to the second clause of the EContP, which is a kind of closure
principle, the logical form comprises all and only the meaning contributions of the
lexical elements in the utterance.

The LRS PROJECTION PRINCIPLE makes the internal and external content
locally accessible throughout head projections, and it guarantees that the meaning
contributions of all subsigns of a sign will be collected.

(5) LRS PROJECTION PRINCIPLE:

In each headed-phrase,

a. the EXCONT value of the head and the mother are identical,

phrase � � LF EXCONT 1
H-DTR LF EXCONT 1 �

b. the INCONT value of the head and the mother are identical,5

phrase � � LF INCONT 1
H-DTR LF INCONT 1 �

c. the PARTS value contains all and only the elements of the PARTS values
of the daughters.

phrase � <> �� LF PARTS 1
H-DTR LF PARTS 2
NH-DTR LF PARTS 3

�� F append 3 2 5 3 5 1 7 MQ
The SEMANTICS PRINCIPLE (SP) specifies restrictions on how to combine the

meaning contributions of different types of syntactic and semantic daughters. For
each kind of meaning composition which introduces subterm restrictions, the SP
specifies a clause. The primary task of these clauses is to state mutual embedding
constraints between the terms of each syntactic daughter. If the relative embedding
of the meaning contributions is not fixed deterministically, we achieve a descriptive
underspecification of readings:

(6) SEMANTICS PRINCIPLE (SP):
5We take the noun to be the head of a quantified NP.

431

1. if the non-head is a quantifier then its INCONT value is of the form� ��� �0����� , the INCONT value of the head is a component of � , and the
INCONT value of the non-head daughter is identical with the EXCONT

value of the head daughter,�
NH-DTR SS LOC CAT HEAD det � �<=====> ������ H-DTR LF � EXCONT 1

INCONT 2 �
NH-DTR LF 1

�� INCONT

�� quantifiers

SCOPE � l-const
ARG1 3 � �� ��

������� F 2 � 3
M OOOOOQ

2. if the non-head is a quantified NP with an EXCONT value of the form� ��� ������� , then the INCONT value of the head is a component of � ,�
1<===> ���� NH-DTR

���� SS LOC CAT � HEAD noun
SUBCAT �:� �

LF EXCONT � quantifiers
ARG2 1 �

����� ����� � �
2D �

H-DTR LF INCONT 2 �F 2 � 1 H M OOOQ
3. [clauses for adverbial modifiers, markers, fillers, . . .]

2.3 An Example

With the LRS principles of Section 2.2 we can now analyze sentences with quanti-
fier scope ambiguities such as Every student reads a book. In a first approximation,
we would like to assign the two readings in (7b) and (7c) to this sentence:

(7) a. Every student reads a book.

b. v � { � ����� 3h�`�����"�w3 � 5 � 7 F ��� 3*� :¡£¢¥¤§¦¨ h�w3 � 5 � 7 �ª© ¤�«£¢`�w3 � 5 � 5 � 5 � 77:7
c. v � { � �¬��� 3*� :¡£¢¥¤§¦� � 3 � 5 � 7 � ��� 3�`����� � 3 � 5 � 7 F © ¤�«£¢ � 3 � 5 � 5 � 5 � 77:7

In the first reading, (7b), the existential quantifier of a book takes wide scope over
the universal quantifier of every student. There is one particular book which every
student reads. In (7c) the scope relation of the two quantifiers is reversed. Every
student reads a book, but it is not necessarily the same book. We write � for the
first variable of type � and use intuitive names for non-logical constants, such as
student � , book � and read � . The variable � is a Davidsonian event variable.

Figure 2 illustrates how an LRS grammar of English licenses the two read-
ings of sentence (7a). Because of the perspicuity of the computational description
language of LRS, we do not use RSRL descriptions of lrs objects at the nodes
of the syntactic tree in the figure. Instead we use the description language of the
LRS implementation language to be introduced in Section 4. In this language lrs
descriptions are notated as Ty2 expressions augmented with a small inventory of

432

additional symbols. The figure depicts the LRS specifications of the lexical entries
of an implemented grammar and the information about the lrs of each phrase which
can be derived according to the LRS principles of the previous section.

In the implementation language ˆ) means that the (possibly augmented) Ty2
expression) is the EXCONT value of the sign’s lrs. The INCONT value is notated
between curly brackets, ®�uR¯ . Square brackets signal a subterm relationship.) � u � (or, equivalently,) 4 � u �) means that u is a subterm of) . We write � u � if we
do not know anything about an expression except that u is a subterm of it.

At the two NP nodes, Clause (1) of the SEMANTICS PRINCIPLE requires the
internal content of the head (student(w,X) and book(w,Y)) to be in the
restrictor of the universal and the existential quantifier, respectively. At the VP
and S nodes, it is Clause (2) that brings the internal content of the verbal head
(read(w,e,X,Y)) in the scope of both quantifiers.

As an effect of the EContP, we know the external contents of the non-heads in
all phrases: At the NP nodes, the external content of the determiners is identical to
their internal contents, as these are the only elements being contributed that contain
the internal contents as their subexpression. Being contributed is the same as being
on the PARTS list in the RSRL specification. In the implementation, every (sub-)
expression mentioned counts as being contributed, unless explicitly marked other-
wise. At the VP node (and analogously at the S node), the external content of the
NP some book must be identical to that of the determiner: this is the only element
being contributed by the NP that satisfies the condition expressed in the lexical
entry of book, i.e., that the external content be a quantifier that binds the variable� . Note that the lexical entry of book has a meta-variable, Y, in the argument slot
of type entity. The local selection mechanism, not depicted here, is responsible for
identifying the variable � , contributed by the existential quantifier, with Y.

At the S node, the second clause of the EContP applies, i.e., the expressions
being contributed specify exactly the expressions which can be used in the result-
ing logical form. There are exactly two Ty2 expressions which are compatible with
the contributions and structural requirements of the lexical entries and that also ful-
fill the subexpression requirements given by the SEMANTICS PRINCIPLE. Either
the universal quantifier of every student is in the nuclear scope of the existential
quantifier of a book, or vice versa.

3 LF Constraints

The linguistic rationale behind the architecture of LRS is evidenced by the smooth
integration of: (I) “typical” LF constraints such as quantifier island constraints, (II)
a straightforward and novel account of negative concord (or multiple exponents)
phenomena, and (III) a treatment of traditionally problematic LF discontinuities,
thus integrating insights from the generative literature on the syntax-semantics in-
terface in terms of Logical Forms. LRS reanalyzes these insights in terms of the ad-
ditional expressive flexibility provided by a truly constraint-based grammar frame-

433

D
et ° ±

(
x
,
[
x
]
,
[
x
]
)

²

ev
er

y

N

ˆ
[
q
(
X
,

³ ,´)/µ W, °

s
t
u
d
e
n
t
(
w
,
X
)

²]
st

ud
en

t

H
E

A
D

N
P

ˆ

¶ (x,[· st
u
d
e
n
t
(
w
,
x
)

¸],[x])
V

ˆ

¹ (w,[ºs» (e
,
[

°
r
e
a
d
(
w
,
e
,
X
,
Y
)

²])])
re

ad
s

D
et ° ºX¼ (y,[y],

[
y
]
)

²

a

N

ˆ
[
q
(
Y
,

½ ,¾)/µ W, °

b
o
o
k
(
w
,
Y
)

²]
bo

ok

H
E

A
D

N
P

ˆ

¿hÀ (y,[· b
o
o
k
(
w
,
y
)

¸],[y])
H

E
A

D
C

O
M

P

V
P

ˆ

Á (w,[¿hÂ (
e
,
[

· read(w
,
e
,
X
,
y
)

¸])]):
[

¿hÀ (y,[bo
o
k
(
w
,
y
)
]
,
[

· read(w
,
e
,
X
,
y
)

¸])]
C

O
M

P
H

E
A

D

S

ˆ

Á (w,[¿�Â (
e
,
[

· read(w
,
e
,
x
,
y
)

¸])]):
[

¿ À (y,[bo
o
k
(
w
,
y
)
]
,
[

· read(w
,
e
,
x
,
y
)

¸]),

¶ (x,[stu
d
e
n
t
(
w
,
x
)
]
,
[

· read(w
,
e
,
x
,
y
)

¸])]

Figure 2: The sentence Every student reads a book

434

work. With a systematic account of typical LF constraints, LRS goes beyond the
data analyzed in alternative frameworks used in HPSG such as MRS or UDRT.

For reasons of space, we will give only a very brief and abstract overview of
the types of LF constraints for which LRS is designed, and we do not discuss con-
crete examples in this paper. Quantifiers islands (type I constraints) are discussed
in (Sailer, 2003, pp. 58–61). A comprehensive empirical motivation for the “mul-
tiple exponent” analysis of negative concord in Polish (type II constraints) and an
explicit LRS analysis thereof are provided in (Richter and Sailer, 2004, pp. 115–
126). Examples of LF discontinuities (type III constraints) and their LRS analysis
are discussed in (Richter and Sailer, 2004, pp. 126–131) and in (Richter, 2004,
Chapter 6).

A typical LF constraint of type I concerns quantifier islands: A universal quan-
tifier may not take scope outside of the clause in which it is realized overtly. As a
constraint this is usually regarded as odd, since existential quantifiers in embedded
contexts may outscope opaque matrix predicates, producing so-called de-re read-
ings. LRS can state restrictions on the scope of quantifiers naturally. They do not
differ from any ordinary syntactic restriction in HPSG. Another source of type I
LF constraint is statements that postulate that no quantifier (of a certain type) may
intervene in the logical form between two given logical operators. Conversely,
we might require that between a negation operator and some constant only certain
quantifiers may intervene.

Type II constraints take advantage of HPSG’s concept of token identity for a
novel description of puzzling facts such as negative concord in Romance languages
or in Polish. The NEG CRITERION restates a principle of Haegeman and Zanut-
tini (1991) from a new perspective: For every verb, if there is a negation in the
EXCONT value of the verb that has scope over the verb’s INCONT value, then that
negation must be an element of the verb’s PARTS list. In other words, if there is
a negation with scope over the verb in the verbal projection, the verb itself must
also contribute the very same negation. Similarly, the NEGATION COMPLEXITY

CONSTRAINT for Polish expresses an insight in terms of LRS which Corblin and
Tovena (2001) found to hold for many languages: For each sign, there may be
at most one negation that is a component of the EXCONT value and has the IN-
CONT value as its component. This expresses a (language-dependent) upper bound
on the number of negations taking scope over each other and over the main verb
of sentences. It also relies on the possibility that, in negative concord languages,
negations contributed by different lexical items might be identified with each other
in the semantic representation. A third principle which builds on the fact that the
same meaning component might be contributed by several lexical elements is the
WH-CRITERION (for German, Richter and Sailer, 2001, p. 291): In every clause,
if the EXCONT value is of the form vGÃ {ÅÄ , then the EXCONT value of the clause
must be contributed by the topicalized sign (again rephrasing a well-known princi-
ple from the literature). Similar “multiple exponent” effects were found in the LRS
analysis of tense in Afrikaans.

LF discontinuities (III) are a lexical phenomenon: A lexical element might

435

make meaning contributions to a sentence that must be realized discontinuously in
the logical form of the overall expression to which they belong. The intervening
meaning components are unpredictable and can not be stated in a finite list. Anal-
yses of these phenomena are typically provided by underspecification formalisms
which allow for decomposing the logical contributions of lexical items and leaving
slots for inserting other pieces of representations.

4 Formal Specification

A formal specification of the core principles of LRS requires a term description
language for Ty2 with an is-component-of relation (‘) is a subterm of u ’), meta-
variables, which, for us, are the variables of the TFL, and a way of attributing
semantic “contribution” by lexical items. It also requires a set of axioms for well-
formed expressions of Ty2 (which we have presented in Section 2.1), as well as
four HPSG principles for IContP, EContP, LRS PROJECTION PRINCIPLE and SP
themselves (Section 2.2). Note the absence of beta-reduction from the formalism.

This core of the LRS architecture allows one to assign to each sentence a log-
ical representation with a model-theoretic interpretation; it uses descriptive under-
specification to assign to each well-formed utterance one or more fully specified
logical form(s) as its meaning representation. If an utterance is Æ -ways ambiguous,
the denotation of the grammar will contain Æ models of it which differ at least in
their meaning representation. In keeping with the tradition of logical form seman-
tics, however, the semantical components of these utterances are modelled by Ty2
terms, not the entities of Ty2’s models themselves; thus, no extra expressive power
beyond TFL’s model theory is actually required.

Formally, we augment TFL’s model theory with four additional partial func-
tions: ÇÈ�É 4�Ê �ÌËÍ��ÎÏ~Ð�Ñ"Ò`Ð¥Ó 4�Ê �ÌË�� ÎÈ"Ô Ñ"Ò`Ð¥Ó 4�Ê �ÌËÍ��ÎÑ"Ò`ÐaÓÕPÏ6Ö 4 ËÍ��Î0��× 3�Ê 7
where Ê is the universe of the TFL model. If sem, incont and excont were features
in the signature of TFL, they would be interpreted by functions mapping Ê toÊ . These functions, however, allow us to refer instead to a separate collection of
entities that model the structure of Ty2 terms. Sem is the principal means of access
to this collection, potentially associating any entity in the model with a Ty2 term,
i.e., a semantics. In practice, this association probably only occurs with signs, and
sem replaces the LF attribute. Any entity can additionally have incont and excont
values, which in practice are employed in accordance with the intuitions of LRS.
Among other things, this means that these values, where they exist, will typically
be subterms of the term that sem refers to. Contrib conversely attributes every Ty2
term in the image of sem to the entities that contributed it.

436

4.1 Constraint Language

Once this model is in place, we need a syntax to refer to it. Augmenting the stan-
dard sorts-and-features signature of an HPSG description language, we add to it a
collection of semantic type declarations, such as shown in Figure 3. These decla-

semtype [t,f] 4 t.
semtype [student,book]: (s->e->t).
semtype read: (s->e->e->e->t).
semtype [every,some]: (e->t->t->t).
semtype w 4 var(s).
semtype q: findom [every,some].
semtype [a,e,x,y,z]: var(e).
semtype lambda: (var(A)->B->(A->B)).

Figure 3: An example semtype signature.

rations declare the semantic constants and semantic variables that can then be used
in our Ty2 terms. Our description language does not stipulate the basic types of the
semantic type system (above, t, e, and s), but it does allow for functional closure.
Notice that even lambda is just another constant, although it has a polymorphic
functional type. There is no reason to distinguish it because beta-reduction has no
distinguished role in this semantics — if it were desired, it would need to be en-
coded as a relation or phrase-structure rule just as any other transformation. The
var/1 operator distinguishes semantic variables from semantic constants. This
distinction is important because, although there is no beta-reduction, there is still
alpha-renaming within variable scope, which we define to be the same as the scope
of TFL variables in descriptions. Constants are unique and never renamed. In the
example above, q is a finite domain variable — an instance of it stands for one of
either every or some.

Having enhanced the signature, we are then in a position to enhance a TFL
description language with extra LRS descriptions. Given a countably infinite col-
lection of meta-variables (Ø), the LRS descriptions (Ù) are the smallest set con-
taining:Ú

the semantic constants of the signature,Ú
the semantic variables of the signature,Ú
applications, ÛR3*ÙÝÜ�5 {�{�{ 5Ù z 7 , where

–

ÇÈ�É Ó�Þaß È 3wÛ 7R; � Ü � {�{�{ ��� z � � ,

–

ÇÈ�É Ó�Þaß È 3*Ùlà 7R; � à , all á[â$ãÝâ$Æ , and

– � can be any type (functional or not),6

6Thus, the case of ä�å^æ is already covered by including the semantic constants.

437

Ú
meta-variable binding: Ø	4&Ù ,Ú
subterm binding: Ù � 4 � ÙlÜ 5 {�{�{ 5Ù z � ,Ú
subterm chain: Ø �}ç�è_é Ø�ê çë�p�6çì ,Ú
incont binding: ®�Ù@¯ ,Ú
excont binding: ˆ Ù ,Ú
contribution: Ù�íGî0Ø ,Ú
unique contribution: Ù�íGØ ,Ú
negative contribution: Ù�í é Ø , andÚ
implication: ïGíGðS4GÙ@ñ\ò � Ù .

Because these are included in the closure of the TFL description language, they can
be conjoined and disjoined with conventional TFL descriptions, and they can also
be applied at feature paths. In the interpretation, however, while TFL descriptions
constrain the choice of element ó + Ê directly, LRS descriptions mostly constrain
our choice of

ÇÈ�É 3*ó 7 + Ë���Î . Incont and excont binding instead constrain our
choice of

Ï~ÐyÑ"Ò`ÐaÓ 3*ó 7 + Ë���Î and

È"Ô Ñ"Ò`Ð¥Ó 3*ó 7 + Ë�� Î , and the contribution constraints
constrain our choice of the elements of

Ñ"Ò`ÐaÓÕPÏ6Ö 3 ÇÈ�É 3*ó 77�ô × 3�Ê 7 .
Subterm binding, Ù � 4 � ÙlÜ 5 {�{�{ 5Ù z � , says that ÙÝÜ�5 {�{�{ Ù z are all subterms ofÙ � . Meta-variables establish the equality of subterms within an LRS description,

within a larger TFL description (which may refer to the semantic term of more
than one feature path’s value), or across the scope of description variables in a
single construct (such as sharing the semantics of the mother and head daughter of
a phrase-structure rule). A subterm chain constrains a subterm from both ends: it
must fall along the chain from Ø �6çwè to Øõê ç�}�}çëì .

What descriptions do not need to explicate, crucially, are all of the well-formed-
ness properties entailed by our interpretation of these description primitives. Math-
ematically, our models will already be limited to those that observe the necessary
well-formedness properties, and computationally, LRS descriptions are closed un-
der a fixed set of algebraic rules that enforce them, as given below. These rules can
be extended, in fact, to allow for universally quantified implicational constraints
over semantic terms, much as HPSG principles appear in TFL. The implication,ïGíGð$4`Ù ñ ò � Ù , states that for every subterm ð of the term being described, if ð is
described by Ù@ñ , then the Ù holds of the term described. In keeping with TRALE’s
interpretation of implicational constraints in TFL, the antecedents of these seman-
tic implications are interpreted using subsumption rather than classical negation.

438

4.2 Description Language Integration

LRS descriptions are identified within ALE descriptions by their embedding within
a @lrs/1 macro that provides the necessary glue to CHR. As a simple example,
consider the following expression of clause (1) of the LRS PROJECTION PRINCI-
PLE above in TRALE syntax:

phrase *> (daughters:hdtr:lf: @lrs([ˆAlpha]),
lf: @lrs([ˆAlpha])).

The meta-variable Alpha is bound in the consequent of this universally quantified
principle to both the excont of the head daughter and the excont of the mother, thus
equating them. The square brackets are necessary because this excont must only be
a subterm of the semantics of the head daughter and the semantics of the mother,
and not necessarily identical.

The IContP above is expressed as:

sign *> lf: @lrs([ˆE:[{I}]]).

The meta-variable I is identified as the incont of the sign’s LF value by the curly
braces of the incont binding primitive. This is a subterm (inner square brackets) of
E, which is identified as its excont (caret), and as a subterm (outer square brackets)
of its sem value. Unlike the TFL presentation, PARTS lists and other structural
overhead are not required in our typed feature structures because meta-variables
dually refer to both a term and the collection of all of its subterms.

4.3 CHR Implementation

In our Prolog implementation of LRS within the TRALE system, all LRS descrip-
tions are compiled into constraints of a Constraint Handling Rules (CHR) handler,
and their well-formedness properties are implemented as the constraint handling
rules themselves. The primitive constraints they are compiled into are:Ú

node(N,ArgTypes,ResType): node N has argument types ArgTypes
with result type ResType.Ú
literal(N,Lit,Arity): node N is labelled by literal Lit with arity
Arity.Ú
findom(N,Lits): node N is labelled by one of the literals in Lits.Ú
ist(N,M,A): node N is the Ath argument of node M.Ú
st(N,M): node N is a subterm of node M.Ú
excont(FS,N): the excont of feature structure FS is N.Ú
incont(FS,N): the incont of feature structure FS is N.

439

Ú
contrib(FS,N): feature structure FS contributed N.Ú
uniquecontrib(FS,N): feature structure FS uniquely contributed N.Ú
nocontrib(FS,N): feature structure FS did not contribute N.

The nodes referred to here are nodes of the typed term graphs that represent the
logical forms that we are assembling. In addition to these primitives, the transitive
closure of st/2, called ststar/2 is also computed on-line.

CHR rules consist of propagators (;÷ö) that detect the presence of a combina-
tion of constraints (left-hand side) in a global constraint store, and in that presence,
execute Prolog goals (right-hand side) that typically add more constraints to the
store. Detection, as in TRALE, amounts to suspending until subsumption holds.
Simplification rules (ø) additionally remove left-hand-side constraints designated
by appearing to the right of the ï . If no ï is provided, then all left-hand-side con-
straints are removed. Right-hand-side goals can also be guarded (ù) — if the guard
fails, then the goal is not executed.

In CHR then, the following algebraic rules are used to enforce well-formedness:Ú
literal/arity consistency
literal(N,Lit1,Arity1) ï literal(N,Lit2,Arity2)ø Lit1 = Lit2, Arity1 = Arity2.Ú
literal extensionality
literal(N,F,A), literal(M,F,A);÷ö ext args(A,N,M) | N=M.Ú
constants
literal(N, ,0) ï st(M,N) ø M = N.Ú
finite domains
findom(N,Lits), literal(N,Lit,);÷ö member(Lit,Lits).Ú
immediate subterm irreflexivity
ist(N,N,) ;(ö fail.Ú
immediate subterm uniqueness
ist(M1,N,A) ï ist(M2,N,A) ø M1 = M2.Ú
subterm reflexivity
st(N,N) ø true.Ú
subterm idempotence
st(M,N) ï st(M,N) ø true.Ú
subterm subsumption
ist(M,N,) ï st(M,N) ø true.

440

Ú
subterm antisymmetry
st(M,N), st(N,M) ø M = N.Ú
subterm upward antisymmetry
ist(M,N,), st(N,M) ø M = N.Ú
type consistency
node(N,ATypes1,RType1) ï node(N,ATypes2,RType2)ø RType1 = RType2, ATypes1 = ATypes2.Ú
literal well-typing
node(N,ATypes, ,), literal(N, ,A);÷ö length(ATypes,A).Ú
immediate subterm well-typing
node(M, ,MResType), node(N,NArgTypes,), ist(M,N,A);÷ö nth(A,NArgTypes,MResType).Ú
incont and excont functionhood
incont(X,N) ï incont(X,M) ø N=M.
excont(X,N) ï excont(X,M) ø N=M.Ú
unique contribution injectivity
uniquecontrib(FS1,N) ï uniquecontrib(FS2,N)ø FS1=FS2.Ú
unique contribution subsumption
uniquecontrib(FS1,N) ï contrib(FS2,N) ø FS1=FS2.Ú
negative contribution idempotence
nocontrib(X,N) ï nocontrib(X,N) ø true.Ú
negative contribution negativity
nocontrib(FS,N), contrib(FS,N) ø fail.

ext args/3 is a guard that checks the arguments of N and M for equality.
This collection of rules is complete in the sense that any inconsistency that

may exist with respect to our standard of well-formedness in Ty2 will be detected.
They are not complete in the sense that the result of simplification under these
rules will be minimal in any useful sense, such as having a minimal number of
distinct nodes in the resulting term graph, or a minimal number of (non-immediate)
subterm arcs. The quest for a combination of propagators and search that would
establish minimality efficiently (in practice, at least) remains to be pursued.

Turning to semantic implication, every instance of an implication description
is compiled into its own CHR primitive constraint. This constraint occurs on the
left-hand side of exactly one new propagator, which is charged with enforcing the
implication. To require that universal quantifiers not outscope clausal boundaries,
for example, we may require of clauses that:

441

\/X:every(_,_,_) --> [ˆ[X]]).

Let us call this implication instance i. We introduce a new primitive i/1, which
will be applied to semantic terms for which implication i is asserted to hold. We
then add one new propagator to enforce the implication:

i(LF),ststar(X,LF),literal(X,every,3)
==> node(Ex,_,_),st(Ex,LF),excont(FS,Ex),st(X,Ex).

Here, LF will be bound to the term to which i applies, X, to the universally quanti-
fied variable X stated in the implication source code, and FS, to the feature structure
with which LF is the associated semantical term.

5 Conclusion

By separating linguistic representations and principles from structural well-formed-
ness and computational considerations, we aspire to do a better job of both. This
separation can be achieved by expanding the description language with a set of
primitives that intuitively capture the requirements of semantical theories (LRS
and otherwise) that manipulate logical forms as typed term graphs, not by using
TFL at any aesthetic cost.

The extension presented here captures the basic primitives found in MRS and
CLLS, the exceptions being the parallelism and anaphoric binding constraints prim-
itively expressed by CLLS. Future empirical study is required before extending the
language in this direction, in our opinion, because much of what falls under the
rubrics of ellipsis and binding is not purely a semantic phenomenon.

A more interesting direction in which to extend the present work is towards a
semantics which does not stop at logical form. Semantics involves meaning, and
meaning is only distinguishable in the presence of inference. Although we have
presented the semantic implication of our description language as a tool for con-
ventional linguistic constraints or for perhaps extending a very common-sensical
core of well-formedness conditions, they are equally well applicable to inference
more broadly construed. This inference would be grounded in presuppositional
content and shared background knowledge as much as it would be in the syntactic
structure of typed lambda terms.

References

Copestake, Ann, Flickinger, Dan, Pollard, Carl and Sag, Ivan A. 2003. Minimal
Recursion Semantics: An Introduction. Journal submission, November 2003.

Corblin, Francis and Tovena, Lucia M. 2001. On the Multiple Expression of Nega-
tion in Romance. In Yves D’Hulst, Johan Rooryck and Jan Schroten (eds.), Ro-
mance Languages and Linguistic Theory 1999, pages 87–115, John Benjamins,
Amsterdam.

442

Egg, Markus and Erk, Katrin. 2002. A Compositional Account of VP Ellipsis. In
Frank Van Eynde, Lars Hellan and Dorothee Beermann (eds.), Proceedings of
the 8th International Conference on Head-Driven Phrase Structure Grammar,
pages 162–179, Stanford: CSLI Publications.

Egg, Markus, Koller, Alexander and Niehren, Joachim. 2001. The Constraint Lan-
guage for Lambda Structures. Journal of Logic, Language and Information
10(4), 457–485.

Frühwirth, T. and Abdennadher, S. 1997. Constraint-Programmierung. Springer.

Gallin, Daniel. 1975. Intensional and Higher-Order Modal Logic. North-Holland,
Amsterdam.

Haegeman, Liliane and Zanuttini, Raffaella. 1991. Negative Heads and the Neg
Criterion. The Linguistic Review 8, 233–251.

Hendriks, Herman. 1993. Studied Flexibility. ILLC Dissertation Series 1995-5, In-
stitute for Logic, Language and Computation, Amsterdam.

Penn, G. 2004. Balancing Clarity and Efficiency in Typed Feature Logic through
Delaying. In Proceedings of the 40th Annual Meeting of the Association for
Computational Linguistics, pages 240–247.

Richter, Frank. 2004. Foundations of Lexical Resource Semantics. Habilitation
Thesis. Seminar für Sprachwissenschaft, Universität Tübingen.

Richter, Frank and Sailer, Manfred. 2001. On the Left Periphery of German fi-
nite Sentences. In W. Detmar Meurers and Tibor Kiss (eds.), Constraint-Based
Approaches to Germanic Syntax, pages 257–300, Stanford: CSLI Publications.

Richter, Frank and Sailer, Manfred. 2004. Basic Concepts of Lexical Resource
Semantics. In Arnold Beckmann and Norbert Preining (eds.), European Summer
School in Logic, Language and Information 2003 – Course Material I, volume 5
of Collegium Logicum, pages 87–143, Kurt Gödel Society Wien.

Sailer, Manfred. 2003. Combinatorial Semantics and Idiomatic Expressions in
Head-Driven Phrase Structure Grammar. Phil. Dissertation (2000). Arbeitspa-
piere des SFB 340. 161, Eberhard-Karls-Universität Tübingen.

Sailer, Manfred. 2004. Local Semantics in Head-Driven Phrase Structure
Grammar. In Olivier Bonami and Patricia Cabredo Hofherr (eds.), Empir-
ical Issues in Syntax and Semantics, volume 5, pages 197–214, URL:
http://www.cssp.cnrs.fr/eiss5/.

von Stechow, Arnim. 1993. Die Aufgaben der Syntax. In Joachim Jacobs, Arnim
von Stechow, Wolfgang Sternefeld and Theo Vennemann (eds.), Syntax. Ein
internationales Handbuch zeitgenössischer Forschung, volume 1, pages 1–88,
Walter de Gruyter.

443

