
From “hand-written” to
computationally implemented HPSG

theories

Nurit Melnik
Haifa University

Proceedings of the 12th International Conference on
Head-Driven Phrase Structure Grammar

Department of Informatics, University of Lisbon

Stefan Müller (Editor)

2005

Stanford, CA: CSLI Publications

pages 311–321

Melnik, Nurit. 2005. From “hand-written” to computationally implemented HPSG
theories. In Stefan Müller (ed.), Proceedings of the 12th International Conference
on Head-Driven Phrase Structure Grammar, Department of Informatics, Univer-
sity of Lisbon, 311–321. Stanford, CA: CSLI Publications. DOI: 10.21248/hpsg.2005.17.

https://orcid.org/0000-0002-0610-915X
http://doi.org/10.21248/hpsg.2005.17
http://creativecommons.org/licenses/by/4.0/

Abstract

The process of turning a “hand-written” HPSG theory into a working
computational grammar requires complex considerations. Two leading plat-
forms are available for implementing HPSG grammars: The LKB and TRALE.
These platforms are based on different approaches, distinct in their underly-
ing logics and implementation details. This paper adopts the perspective of
a computational linguist whose goal is to implement an HPSG theory. It
focuses on ten different dimensions, relevant to HPSG grammar implemen-
tation, and examines, compares, and evaluates the different means which
the two approaches provide for implementing them. The paper concludes
that the approaches occupy opposite positions on two axes:FAITHFULNESS

to the “hand-written” theory andCOMPUTATIONAL ACCESSIBILITY. The
choice between them depends largely on the grammar writer’s preferences
regarding those properties.

1 Overview

HPSG has logical and mathematical foundations which make it amenable to com-
putational implementation. Yet it is seldom the case that this potential is in fact
fulfilled, although there exist a number of platforms for implementing HPSG gram-
mars. Thus, most descriptions and analyses of linguistic phenomena in the litera-
ture are not substantiated by a working computational grammar.

Two leading implementation platforms are available for implementing HPSG
grammars. The Linguistic Knowledge Building (LKB) system (Copestake, 2002)
is the primary engineering environment of the LinGo English Resource Grammar
(ERG) at Stanford. The LKB is developed not particularly for implementing HPSG
grammars, but rather, as a framework independent environment for typed feature
structures grammar. TRALE, an extension of the Attribute Logic Engine (ALE)
system, is a grammar implementation platform that was developed as part of the
MiLCA project (Meurers et al., 2002), specifically for the implementation of theo-
retical HPSG grammars that were not explicitly written for language processing.1

The two platforms are based on different approaches, distinct in their underlying
logics and implementation details.

This paper adopts the perspective of a computational linguist whose goal is to
implement an HPSG theory. It is based on the implementation of a “hand-written”
grammar proposed by Melnik (2002) to account for verb initial constructions in
Modern Hebrew. A representative subset of the grammar, including word order,
agreement, and valence alternation phenomena, serves as a test case.

†This is a slightly revised version of the abstract that was submitted to the HPSG-2005 confer-
ence. The full paper is downloadable from http://cl.haifa.ac.il/projects/hebgrammar. This research
was supported by the Israel Science Foundation (grant no. 136/01) and by The Caesarea Edmond
Benjamin de Rothschild Foundation Institute for Interdisciplinary Applications of Computer Science.
Many thanks to Shuly Wintner for his support and valuable comments and to anonymous reviewers
for HPSG-2005 for their constructive comments.

1See http://milca.sfs.nphil.uni-tuebingen.de/A4/HomePage/English/beschr.html

312

The paper focuses on different dimensions, relevant to HPSG grammar imple-
mentation: type definition, grammar principles, lexical rules, exhaustive typing,
definite relations, non-binary grammar rules, semantic representation, grammar
evaluation, and user-interface. It examines, compares, and evaluates the different
means which the two approaches provide for implementation, by referring to ex-
amples from a “hand-written” grammar fragment that was implemented in the two
systems. The paper concludes that the approaches occupy diametrically opposed
positions on two axes:FAITHFULNESS to the “hand-written’ theory andCOMPU-
TATIONAL ACCESSIBILITY . The findings of this paper are valuable to linguists
who are interested in implementing their grammar, as well as to those who develop
implementation platforms.

2 Type Definition

Types in a typed feature-structure framework are defined by determining (i) the
type’s hierarchical relation to other types, (ii) appropriateness conditions, (iii) con-
straints on the values of embedded features, and (iv) path equations.

TRALE separates theSIGNATURE, where the first two properties are defined,
from the THEORY, in which the latter are stated. In the signature file, types are
entered in a list format, where subtypes appear indented under their respective
supertype(s). Features and values are introduced following the type. Constraints
on embedded features and path equations are entered separately from the signature
in the theory file as implicational constraints in which the type is the antecedent.

The LKB, on the other hand, takes a centralized bottom-up approach, where
all the information related to a type is defined in one location, in theTYPES file.
The definition of each type, then, includes a list of its immediate supertype(s) and
introduced features, as well as all other type-related constraints. This approach
facilitates the task of defining the type inventory and accessing this information
while developing the grammar.

Although the hierarchies are defined differently in the two systems, they are
both subject to the glb condition, which requires that the hierarchy be a bounded
complete partial order (BCPO). Thus, when a non-BCPO hierarchy is defined,
TRALE enforces the condition by producing an error message during compila-
tion. The LKB, on the other hand, automatically creates a glb type in each case of
violation and restructures the hierarchy accordingly.

On the one hand, by automatically fixing the violation, the LKB enables the
grammar writer to maintain ignorance regarding a potentially confusing issue. This
ignorance, however, turns into confusion once the grammar writer views the type
hierarchy diagram. The automatic restructuring of the hierarchy, including the ad-
dition of generically named types, may be incomprehensible to the naive grammar
writer. Moreover, the resulting hierarchy is reflected only in the display and not
in the actual definitions, rendering the automatically created glb types, along with
their generic names, inaccessible. A possible solution is to modify the hierarchy

313

definition to reflect the corrected hierarchy, thus allowing the grammar writer to
give the glb types more meaningful labels.

Multi-dimensional type hierarchies are widely used in the HPSG literature, yet
multi-dimensionality is not a part of the formal type system itself (Penn and Hoet-
mer, 2003). Neither the LKB nor TRALE provide the grammar writer with a way to
define partitions (or dimensions) in the hierarchy. Consequently, if partition labels
are implemented as types in the hierarchy, they are not distinguished formally from
other types, nor do the LKB and TRALE prevent the grammar writer from defin-
ing types that inherit from two subtypes under one pseudo-partition. Moreover,
a multi-dimensional inheritance hierarchy in which partitions are defined as types
does not respect the glb condition, and is therefore subjected to the systems’ dis-
tinct treatments, described above. Although this omission does not prevent gram-
mar writers from implementing their grammars, the result clearly does not reflect
the source and the intention of the grammar writer.

3 Principles

Principles in HPSG are often defined as implicational constraints. Thus, for ex-
ample, the Head Feature Principle (HFP), which states that the value of theHEAD

feature of the headed-phrase is structure-shared with that of its head-daughter, is
defined as a type constraint on thehd-phtype.

hd-ph→

[
HEAD 1

HD-DTR
[
HEAD 1

]
]

In the LKB principles are necessarily linked to types and are stated as part of
the type definition. Thus, the HFP is implemented as part of the definition of the
type hd-ph. In TRALE, on the other hand, principles such as the HFP are stated
as part of the theory, in the form of implicational constraints where the type is the
antecedent, similarly to the definition above. TRALE, however, extends implica-
tional constraints to express principles which do not target a particular type. More
specifically, the antecedent of implicational constraints can be arbitrary function-
free, inequation-free feature structures .

Consider, for example, the following complex-antecedent principle (Meurers,
2001).

word

SYNSEM| LOC |CAT

HEAD

[
verb

VFORM finite

]

VAL |SUBJ
〈

LOC |CAT |HEAD noun
〉

→[
SYNSEM| LOC | ... |SUBJ

〈[
LOC |CAT |HEAD |CASEnominative

]〉]

The principle expresses the generalization that NP subjects of finite verbs are as-

314

signed nominative case. The complex antecedent singles out the relevant class of
verbs without requiring there to be a corresponding type.

The ability to use implicational constraints with complex antecedents provides
the grammar writer with additional means to express generalizations. When the
given dimensions in the type hierarchy do not group together a particular set of
objects to which a certain generalization applies, the grammar writer can choose
not to expand the hierarchy, but rather to use a complex feature structure as an an-
tecedent to an implicational constraint expressing the generalization. This solution
can cut down on the size of the type hierarchy and its complexity.

4 Lexical Rules

The main issue that is pertinent to the implementation of lexical rules (LRs) is
the “carrying over” of information from the input to the output of the rule. The de-
scriptions of the input and output of lexical rules generally include only the features
and values that are relevant for the particular rule; either those which constrain the
types of objects on which to apply the rule or those which provide “information
handles” (Meurers, 1994). All information which is not changed by the lexical
rule is assumed to be copied over from the input to the output. An implementation
platform thus has to implement the explicit as well as implicit copying of values.

The LKB views lexical rules as unary grammar rules which relate a mother
structure (the output) to its daughter (the input). Similarly to grammar rules, the
description of the daughter is included in theARGS feature of the mother. This
provides a partial solution to the “carrying over” problem — the descriptions of
both the mother and daughter are a part of a single feature structure. Neverthe-
less, the grammar writer is required to explicitly specify by structure-sharing the
information that is copied over. Aside from deviating from HPSG conventions, this
solution may result in a loss of generality.

TRALE provides two mechanisms for implementing lexical rules: the tradi-
tional ALE mechanism and a mechanism referred to as ‘description-level lexi-
cal rules’ (DLRs) which encodes the treatment proposed in Meurers and Minnen
(1997). Unlike the format of the rules in the LKB, the TRALE syntax for both
types of LRs is similar to the familiar ‘X⇒ Y’ notation. More importantly, from
the perspective of the grammar writer, the main distinction between the two ap-
proaches is in the “carrying over” mechanism. ALE LRs, similarly to the LKB
mechanism, require explicit specification of “carried over” information. The DLR
version provides an automatic “carrying over” mechanism which implements the
intuitions behind the “hand-written” version of lexical rules. This is a clear advan-
tage in terms of approximating written theories and maintaining generality.

315

5 Exhaustive Typing and Subtype Covering

‘Exhaustive typing’ refers to a particular interpretation of the signature according
to which subtypes exhaustively cover their supertypes. Consequently, if an object
is of a certain non-maximal typet then it is also of some more specific subtype
subsumed byt.2

A simple example is the HPSG analysis of subject-auxiliary inversion in En-
glish. In order to restrict the licensing of inversion to auxiliary verbs, verbs are
defined as having two features:INV andAUX . Furthermore, the general typeverb
is assumed to have two subtypes:main-verbandaux-verb.

verb
AUX bool
INV bool

main-verb
AUX −
INV −

aux-verb
AUX +

INV bool

Under an exhaustive typing interpretation, objects of typeverbwhich are not
compatible with eithermain-verbor aux-verb(e.g., verbs specified with

[
AUX −

]

and
[
INV +

]
) are rejected. This is the interpretation which TRALE employs. In the

LKB such feature structures are accepted.
In addition, TRALE employs a subtype covering strategy whereby if the sys-

tem recognizes that the values of a feature structure of a non-maximal type are
consistent with the values of only one of its subtypes, it will promote those values
to the values of the compatible subtype. This is justified only under an exhaustive
typing interpretation, and is therefore not a part of the LKB system.

One advantage to TRALE’s approach is that it implements an implicit assump-
tion in “standard” HPSG (e.g., Pollard and Sag (1994)) and is thus appropriate if the
goal is to narrow the gap between “hand-written” theories and their implemented
counterparts. Second, Meurers (1994) notes that “while both interpretations allow
the inference that appropriateness information present on a type gets inherited to
its subtypes, we can now additionally infer the appropriateness specifications on
a type from the information present on its subtypes”. Moreover, in addition to
increasing the expressive power, such a system facilitates syntactic detection of
errors and increased efficiency in processing (Meurers, 1994).

The main reasons that are given for adopting the alternative approach, often
referred to as ‘open-world reasoning’, are not theoretical, but rather, motivated
by engineering considerations. This type of reasoning allows the grammar writer

2This interpretation is also referred to in the literature as ‘closed world’. However, as one reviewer
pointed out, the terms ‘closed/open world’ have a different meaning in the study of programming
languages and should therefore be avoided.

316

to be non-committal regarding the complete inventory of types needed to account
for the language. This is particularly helpful during incremental grammar/lexicon
development.

6 Definite Relations

“Hand-written” HPSG makes use of various relations which are external to the
description language, many of which apply to lists and sets. One such relation
is APPEND. The LKB and TRALE differ greatly in the solutions that they offer
for implementing “hand-written” analyses which make use of definite relations.
The LKB takes a conservative stance and adheres to the description language,
while TRALE augments the description language with a programming language
for implementing definite relations and incorporating them into type constraints
and rules.

Programming definite relations in the TRALE environment is very similar to
programming in Prolog, with the exception that first-order terms in Prolog are re-
placed with descriptions of feature structures. Thus, a list in this case is not a list
of terms, but rather a list of descriptions of feature structures.

A thorough discussion of the benefits of adding recursive relations to the de-
scription language of implementation platforms for HPSG grammars is found in
Meurers et al. (2003), which compares the treatment of unbounded dependencies
and optional arguments in the ERG, implemented in the LKB, with that of TRALE.
They conclude that the ability to express relational goals increases the grammar’s
modularity and its ability to express generalizations, and reduces the gap between
“hand-written” theories and their implemented counterparts. This conclusion is
echoed in the following section.

7 Non-binary Grammar Rules

Grammar rules in the HPSG literature are not restricted to binary rules. A prime
example is the head-complement phrase, one of the most basic phrase structures in
the grammar. In addition to being non-binary, the head-complement phrase rule is
designed to account for phrases with a varying number of daughters. Implementing
a rule for such a phrase type poses a number of challenges for a computational
system, challenges which are handled differently by the two systems.

The assumption in the LKB is that the number of daughters associated with
each rule is fixed. Thus, for grammars which are not restricted to binary branching
trees the grammar writer needs to define phrase types and grammar rules for each
arity. TRALE provides a specialcats> operator to express rules with daughters
lists of unspecified length. This, combined with the ability to incorporate definite
recursive relations into the grammar provides the grammar writer with a way to im-
plement non-binary grammar rules, such as the head-complement rule, in a concise
and elegant manner, which closely approximates “hand-written” grammars. This,

317

however, does require from the grammar writer the programming skills needed to
be able to code using the definite logic programming language.

8 Semantic Representation

The LKB contains a module for processing Minimal Recursive Semantics (MRS)
representations. The module is independent from the rest of the LKB and pro-
vides tools for manipulating MRS structures in feature structure representations
(Copestake and Flickinger, 2000). TRALE provides an alternative module which
is an implementation of Lexical Resource Semantics (Penn and Richter, 2004). A
comparison and evaluation of the two systems will be given in the full paper.

9 Evaluating Competence and Performance

Implemented grammars can be evaluated according to two dimensions: compe-
tence and performance. The competence of a grammar refers to its coverage and
accuracy, that is the ability to account for all and nothing but sentences which are
assumed to be grammatical. Performance relates to the resources — mainly pro-
cessor time and memory space — that are used during processing.

Both the LKB and TRALE provide a way for defining a test suite which can
be used as a benchmarking facility. A batch parse returns for each sentence in
the test suite the number of parses and passive edges. In terms of performance,
TRALE indicates for each sentence the CPU time in seconds that it took to process
the sentence. In the LKB only a total figure for all sentences is given. More
sophisticated tools for evaluating competence and performance of grammars are
available in both systems through the[incr tsdb()] package (Oepen, 2001).

10 User-Interface Issues and Features

Aside from major design differences between the two systems, the LKB and TRALE
are distinguished by other more superficial user-interface type of differences.
• The LKB provides an interactive display of the grammar’s type hierarchy. The
user can click on types and examine their immediate and expanded definitions.
TRALE produces static images of the hierarchy.
• Both systems provide ways for displaying and inspecting feature structures and
syntactic trees. TRALE’s Grisu graphical interface displays feature structures in
AVMs that are identical to those of “hand-written” HPSG. The LKB display is less
compact and more difficult to navigate.
• Parametric macros in TRALE are used as a shorthand for descriptions that are
used frequently. Macros are especially useful for defining the lexicon when it is
structured to minimize lexeme-specific information.

318

• The LKB is a graphic-user-interface system where commands are invoked through
drop-down menus. In TRALE the user interacts with the program by using com-
mands entered at the Prolog prompt.
• The LKB uses the same syntax to define types, lexical rules, grammar rules, and
words in the lexicon. In TRALE distinct formats, similar to “hand-written” HPSG,
are used for each of the grammar components.
• The LKB comes with the Matrix (Bender et al., 2002), an open-source starter-kit
for rapid prototyping of precision broad-coverage grammars. TRALE grammars
need to be implemented from scratch, or based on existing grammars.

11 Conclusion

Generally speaking, the characterization of HPSG as an implementable grammat-
ical theory is justified, due to the computational effort that was put into designing
and developing the two implementation platforms discussed in this paper. The
major gap that was identified between “hand-written” HPSG and its implemented
counterpart was in the multi-dimensional inheritance mechanism, which is not in-
corporated into neither implementation platforms.

The LKB and TRALE can be compared and evaluated along two different axes:
FAITHFULNESS andACCESSIBILITY. Faithfulness is the extent to which the im-
plemented grammar resembles the original “hand-written” one. Accessibility, on
the other hand, is the degree of computational skills that is required from a linguist
in order to implement a grammar.

In some way, the LKB can be viewed as a simplified TRALE. Thus, when
implicational constraints with complex antecedents, DLR lexical rules, thecats>
operator, definite clauses, and macros are eliminated, one can implement an LKB-
like grammar in TRALE. Of course, one LKB feature that cannot be assimilated is
the automatic correction of glb condition violations.

The gap between the LKB-like TRALE grammar and a grammar implemented
using the entire collection of tools provided by TRALE characterizes the differ-
ences between the systems. The ‘true’ TRALE grammar is positioned much higher
on the faithfulness axis than the LKB-like TRALE grammar. The TRALE tools
needed in order to elevate the LKB-like grammar on this axis require from the
linguist more computational skills. This is especially true when writing (and de-
bugging) Prolog definite clauses to express relational constraints.

In terms of accessibility, the menu-driven user interface of the LKB is more
user-friendly than TRALE’s command-line interface, making the LKB more at-
tractive to the less computationally savvy linguist. However, tipping the balance a
little on the accessibility scale towards TRALE is its AVM display, which is much
easier to process than the LKB’s. Consequently, a computational linguist interested
in implementing an HPSG theory must consider these dimensions when choosing
an implementation platform.

319

References

Bender, Emily M., Flickinger, Daniel P. and Oepen, Stephan. 2002. The Gram-
mar Matrix: An Open-Source Starter-Kit for the Rapid Development of Cross-
Linguistically Consistent Broad-Coverage Precision Grammars. In John Carroll,
Nelleke Oostdijk and Richard Sutcliffe (eds.),Proceedings of the Workshop on
Grammar Engineering and Evaluation at the 19th International Conference on
Computational Linguistics, pages 8–14, Taipei, Taiwan.

Copestake, Ann. 2002.Implementing Typed Feature Structure Grammars. Stan-
ford, CA: CSLI publications.

Copestake, Ann and Flickinger, Dan. 2000. An Open Source Grammar Devel-
opment Environment and Broad-coverage English Grammar Using HPSG. In
Proceedings of the 2nd International Conference on Language Resources and
Evaluation, Athens, Greece.

Melnik, Nurit. 2002.Verb-Initial Constructions in Modern Hebrew. Ph. D.thesis,
University of California at Berkeley.

Meurers, Detmar. 1994. On Implementing an HPSG Theory – Aspects of the
Logical Architecture, the Formalization, and the Implementation of Head-
Driven Phrase Structure Grammars. In Erhard W. Hinrichs, Detmar Meurers and
Tsuneko Nakazawa (eds.),Partial-VP and Split-NP Topicalization in German –
An HPSG Analysis and its Implementation, pages 47–155, T̈ubingen, Germany:
Eberhard-Karls-Universität Tübingen.

Meurers, Detmar. 2001. On expressing lexical generalizations in HPSG.Nordic
Journal of Linguistics24(2), 161–217, special issue on ‘The Lexicon in Lin-
guistic Theory’.

Meurers, Detmar, Kuthy, Kordula De and Metcalf, Vanessa. 2003. Modularity of
grammatical constraints in HPSG-based grammar implementations. InProceed-
ings of the ESSLLI ’03 workshop “Ideas and Strategies for Multilingual Gram-
mar Development”, Vienna, Austria.

Meurers, Detmar and Minnen, Guido. 1997. A Computational Treatment of Lexical
Rules in HPSG as Covariation in Lexical Entries.Computational Linguistics
23(4), 543–568.

Meurers, W. Detmar, Penn, Gerald and Richter, Frank. 2002. A Web-based In-
structional Platform for Constraint-Based Grammar Formalisms and Parsing. In
Dragomir Radev and Chris Brew (eds.),Effective Tools and Methodologies for
Teaching NLP and CL, pages 18 – 25, New Brunswick, NJ: The Association for
Computational Linguistics.

320

Oepen, Stephan. 2001.[incr tsdb()] — Competence and Performance Laboratory.
User Manual. Technical report, Computational Linguistics, Saarland University,
Saarbr̈ucken, Germany, in preparation.

Penn, Gerald and Hoetmer, Kenneth. 2003. In Search of Epistemic Primitives in
the English Resource Grammar. InProceedings of the 10th International Con-
ference on Head-Driven Phrase Structure Grammar, East Lansing, Michigan.

Penn, Gerald and Richter, Frank. 2004. Lexical Resource Semantics: From Theory
to Implementation. In Stefan M̈uller (ed.),Proceedings of the HPSG-2004 Con-
ference, Center for Computational Linguistics, Katholieke Universiteit Leuven,
pages 423–443, Stanford: CSLI Publications.

Pollard, Carl and Sag, Ivan A. 1994.Head-Driven Phrase Structure Grammar.
CSLI Publications and University of Chicago Press.

321

