
Memory management for
unification-based processing of typed

feature structures

Karen Steinicke
Universität Tübingen

Gerald Penn
University of Toronto

Proceedings of the 15th International Conference on
Head-Driven Phrase Structure Grammar

National Institute of Information and Communications Technology, Keihanna

Stefan Müller (Editor)

2008

Stanford, CA: CSLI Publications

pages 189–203

Steinicke, Karen & Gerald Penn. 2008. Memory management for unification-
based processing of typed feature structures. In Stefan Müller (ed.), Proceedings
of the 15th International Conference on Head-Driven Phrase Structure Gram-
mar, National Institute of Information and Communications Technology, Keihanna,
189–203. Stanford, CA: CSLI Publications. DOI: 10.21248/hpsg.2008.11.

https://orcid.org/0000-0003-3553-8305
http://doi.org/10.21248/hpsg.2008.11
http://creativecommons.org/licenses/by/4.0/


Abstract

We consider two alternatives for memory management in typed-feature-
structure-based parsers by identifying structural properties of grammar signa-
tures that may be of some predictive value in determining theconsequences
of those alternatives. We define these properties, summarize the results of a
number of experiments on artificially constructed signatures with respect to
the relative rank of their asymptotic cost at parse-time, and experimentally
consider how they impact memory management.

1 Introduction

Memory management deals with organizing the compiled object of a computer pro-
gram so as to consume less memory for the same amount of work. When the over-
all memory consumption becomes so large that it swaps out to disk, better mem-
ory management can also make the compiled object considerably faster. HPSG
parsing, particularly with large grammars such as the English Resource Grammar
(Copestake and Flickinger, 2000), has a number of problems with memory con-
sumption. Very often, parsing charts must be pruned or chart-parsing must be ter-
minated early because the overall memory consumption is toogreat for a grammar
developer’s desktop computer.

Memory managers must decide how to allocate memory to an application over
the course of an execution, detect when an application no longer requires a certain
location in memory, and recycle locations that are no longerneeded. A central
concern to all of these tasks is the size of the blocks of memory that are allocated,
monitored and recycled.

Current HPSG parsers do have memory managers — relying on theoperat-
ing system is simply not an option. The ALE system (Carpenterand Penn, 1996)
uses SICStus Prolog’s memory manager, and the LKB (Copestake and Flickinger,
2000) uses Allegro Common Lisp’s memory manager. PET (Callmeier, 2001) ac-
tually comes with a few options, including using pools of fixed-size memory blocks
à la C++, a Windows-style virtual memory manager, and a special 2-stack version
of the model that Prolog uses. LiLFeS (Makino et al., 1998) has its own mem-
ory manager for logic programming with typed feature structures, which at least
in early versions of that system, put its performance well behind that of SICStus
Prolog (Penn, 2000).

In the context of HPSG parsing, the central memory management question has
been whether to (re-)allocate memory for feature structures in blocks that exactly
correspond to the arity of their current type (a block consists of an encoding of the
type plusn pointers to each of then appropriate feature values for that type) or to
allocate it in blocks that are, on occasion, larger or smaller than what is currently
needed. The argument for adding extra space is connected to the subtype polymor-
phism that is inherent to the logic of typed feature structures. While each type does
have a fixed arity of features appropriate to it, that type maybe promoted to a sub-
type, whereupon it may acquire more such features. If extra space is allocated to

190



the feature structure at the outset, theframethat stores the type and pointers to the
appropriate feature values does not need to be resized, moved or reallocated. The
argument for allocating less space is equally compelling, especially when certain
feature values can be inferred from context. There is, in fact, a great experimental
evidence that in large practical grammars, it pays even to re-derive certain feature
values as needed. Research on this began with Goetz’s work onthe Troll system
(Goetz, 1993), in which he coined the termunfilling, and nearly every system for
HPSG parsing since then has experimented with some form of this. We will not
discuss unfilling more in this paper; for the purposes of thisstudy, one can either
leave even more cells empty or tighten the representation upeven further, so the
same choice that we address here remains present even when unfilling is used.

Most of the previous work on “memory management” in HPSG parsing has fo-
cussed on specialized unification algorithms for this task that avoid copying. While
these exert a great influence upon the operating conditions of the memory man-
ager, they do not by themselves manage memory, nor do they completely answer
the central question posed above: what the size of the allocated frames should be.
Lower-level research that directly pertains to that question is far more sparse and
what there is is mostly anecdotal. Penn (2000) experimentedwith what he called a
variable approach, in which the number of available feature slots wasexactly the
number of appropriate features to the current type, and afixedapproach, in which
enough extra space was allocated, as determined by a coarse modularization of the
type signature and a graph colouring algorithm, to guarantee that the frame would
never need to be relocated. He tested both of these on two grammars: the ALE
HPSG grammar (Penn, 1993) 93), in which the fixed approach wasslightly better,
and a categorial grammar written in typed feature logic for the telephone bank-
ing domain from Bell Labs, in which the fixed approach was significantly better.
Callmeier (2001) also experimented with a fixed and variableapproach, although
his description of his fixed approach involved modularization with no graph colour-
ing. He found that the variable approach worked better on theEnglish Resource
Grammar, and that the fixed approach worked slightly better on the Japanese Verb-
mobil grammar. While it is clear from both theses that the authors appreciated that
the signatures and the distribution of feature structures over types played a very
prominent role in determining which method was better, neither leaves the reader
with any indication of what it specifically is about those signatures that would
favour either of these approaches.

Our purpose in undertaking the study described here has beento complement
this earlier work on real grammars by testing both approaches on a range of an-
alytically formulated signatures with very controlled characteristics. This control
allows us to determine some of the various dimensions of a type signature’s com-
plexity that influence whether the fixed or variable approachwill be more bene-
ficial. Real grammars are still important, as are the corporaon which they are
evaluated, because these provide the empirical distributions over these characteris-
tics that determine the weights on these analytic variablesas they combine to yield
the overall cost of the memory management strategy used. Ourbelief, however,

191



is that the study of real grammars was perhaps premature. Prior to the present
study, we did not even know what the variables were — hence theoblique timings
reported in previous work on this subject.

Some of those variables are very task-specific, actually. For example, chart
parsing isO(nMMG2Æ2), and the number of edge accesses is known to be in-
fluenced by the edge’s position and the parsing control strategy. We focussed on
unification. This is important to everyone who uses feature structures. HPSG has
the added benefit of a type system for its feature structures,which allows us to
do more static analysis and less empirical analysis than in grammar formalisms in
which their untyped historical precursors are used.

The potential benefits of this direction of research are twofold. First, it can
serve as a guide to grammar writers, so that they may be able tochoose more ef-
ficient encodings of linguistic constructions in signatures, when several acceptable
ones present themselves. Second, it can serve as a guide to system developers, who
will be able to produce smarter, more flexible compilers — perhaps some day ones
that generate code which adapts its representations of feature structures in response
to the empirical distributions measured over several of thevariables proposed here.

Section 2 enumerates the variables that we tested, and illustrates how some sim-
ple signatures change as a result of varying these dimensions of signature structure.
Section 3 discusses the results of our experimental comparison of these variables,
and Section 4 then focusses on the specific issue of fixed vs. variable frame allo-
cation, and how these variables influence that choice. This can be seen as a case
study in how these variables, and a static analysis of the signature more generally,
can provide us with a deeper understanding of how grammars behave.

2 Dimensions of Signature Structure

We measured the effects of varying each of the following dimensions of a signa-
ture’s structure, both individually and together.

2.1 Arity Growth

Arity growth refers to how quickly a subtype chain confers additional appropriate
features onto its types as a function of height. The signature in Figure 1(a) has
faster arity growth than the signature in Figure 1(b). Both allocate the same number
of appropriate features to their maximally specific type, but Figure 1(b) does so one
at a time through a longer chain.

2.2 Chromatic density

Signatures with a high chromatic density have more different pairs of features that
are appropriate to a single type than signatures with low chromatic density. In
Figure 2(a), for example, the pairsA andB, B andC, andA andC are all appropriate
to some common type (three of them in each case, actually —d, e andf ). In fact,

192



(a) (b)

Figure 1: An illustration of (a) fast arity growth vs. (b) slow arity growth.

all three together are appropriate to a common type. In Figure 2(b), on the other

(a) (b)

Figure 2: An illustration of (a) high chromatic density vs. (b) low chromatic den-
sity.

hand, there are still three features, but we will never find one of them in a feature
structure where another is appropriate.

Signatures with low chromatic density require smaller frames in the fixed ap-
proach than signatures with high chromatic density (Penn, 1999).

2.3 Drag

Drag is related to chromatic density, but is also effected byhow high within subtype
chains the feature introducers are situated. In Figure 3(a), a fixed approach would
need to assign as large of a frame tom as it does tou, in spite of the fact thatm
has no appropriate features of its own.m has a higher drag there than it has in
Figure 3(b), because in Figure 3(b), it could use every slot that it is allocated by a
fixed approach, in spite of the fact that its frame would be thesame size.

2.4 Mesh

Mesh determines how many corresponding feature values mustbe (recursively)
unified when two feature structures having a particular pairof types are unified.

193



(a) (b)

Figure 3: An illustration of (a) high drag vs. (b) low drag.

The pairs andt has a higher mesh in the signature of Figure 4(a) than it does in
that of Figure 4(b), because, while they both have three appropriate features defined

(a) (b)

Figure 4: An illustration of (a) high mesh vs. (b) low mesh.

in both signatures, their sets of features are disjoint in Figure 4(b).

2.5 Static Typability

In a statically typable signature, the successful unification of two well-typed feature
structures is always well-typed. In a non-statically typable signature, the results
of successful unifications must be checked to ensure that they are. Figure 5 is a
statically typable signature. Figure 6 is very close to Figure 5, but it is not statically
typable, because the result of unifying feature structuresof typess and t, even
when successful, may not yield a feature structure that has an A value of typee. If
successful, it will always yield a value atA that is consistent withe in the absence
of inequations and extensional types, so it is often well-typable, even when not
well-typed, but the addition of an extra maximally specific subtype ofd to the
signature could easily prevent even that. Non-statically typable signatures require
more work to unify, in general.

Usually, we speak of an entire signature being statically typable or not, but we
can easily generalize this to a degree of static typability by counting the number or
percentage of type pairs for which unification would requirethis extra amount of
type checking.

194



Figure 5: A statically typable signature.

Figure 6: A non-statically typable signature.

2.6 Trailing

Trailing refers to the overhead of tracking a sequence of small changes to a data
structure in memory (atrail ) so that they can be undone in reverse order. Applica-
tions of backtracking search strategies often employ this.In the context of feature-
structure-based all-paths parsing, backtracking can arise as a result of description-
level disjunctions, subtype declarations in which a type has more than one imme-
diate subtype (at least in some interpretations of subtyping), logic programs with
predicate-level disjunctions or multiple clause definitions, or phrase structure rule
systems in which the left-hand-side categories of two or more rules are unifiable.

Chart parsers almost by definition prefer the cost of structure copying to the
cost of backtracking found in shift-reduce parsing, for example. Even within chart
parsers, however, there are aspects of access to the parsingchart relative to which
copying vs. trailing again trade off. This latter trade-offhas been ignored for the
most part, mainly because the re-discovery of dynamic programming within the

195



computational linguistics community happened to coincidewith an infatuation for
Prolog implementations of parsers, within which this kind of precise control over
chart access was not available without a considerably greater amount of effort
(Penn and Munteanu, 2003). Even with that effort — or withoutProlog — the
choice of copying vs. trailing is more crucial and more complicated to optimally
resolve in the case of feature-structure-based parsing because of the size of the
feature structures.

As for the other potential sources of backtracking, and therefore trailing, the
trend within the HPSG community over the last thirteen or more years has been
to mercilessly hunt them down and eliminate them. The English Resource Gram-
mar at its inception deliberately ruled out the use of explicit disjunction operators,
at the description or predicate level, for the sake of both efficiency and portabil-
ity. The LKB, PET and later parsers adopted what was, at the time, ALE’s very
anomalous interpretation of subtyping and constraint resolution in order to back
away from potentially very costly backtracking searches, curiously without the
logic programming mechanisms that one needs in order to makethis constraint
resolution strategy sound and complete. We will return to this topic in Section 3.

We did not measure the cost of delaying (Penn, 2004).

3 Relative Cost

Given an abstract signature, such as one of the examples above, and a skeletal
parsing control program, both of which can be modified to independently vary all of
the parameters given in the last section, plus a constant underlying implementation
of the unifier, we may first ask which parameter is inherently more costly than the
other. Given a choice between making a grammar less chromatically dense or more
statically typable, for example, which of these directionsof development will result
in a faster parser?

It is very difficult, and perhaps impossible, to answer this question in a way that
generalizes over all grammars and all implementations. Theparser implementation
used in these experiments is described in great detail in Steinicke (2007). It is a
reimplementation of the Warren Abstract Machine, modified to operate on typed
terms that allow for subtype polymorphism, arity growth andnon-static typability.
It is written in C++ and was compiled with GNU C++ 4.1. All of the experimental
runs described in this paper were run on an AMD athlon 64/3000with 512 MB
of RAM, and were iterated for 200,000 unifications per singletime measurement
reported. Approaching the implementation at this very low level allows us to rule
out parochial properties of the memory managers used in higher-level program-
ming languages, and focus on a single, fairly neutral implementation. The one
very strong, although still common assumption made is that working (non-chart-
edge) memory is allocated from a global stack that we maintain, in keeping with
the architecture of the WAM. So we are doing something typical and reasonable, if
not generalizable.

196



The base signature and parsing control are also described inSteinicke (2007).
All of the experiments reported involve modifying aspects of these to vary the
number of unifications, number of trail unwindings, size of the feature structures,
etc. Again, this does not generalize over all grammars that linguists write, nor even
look similar to a single grammar of a human language. There isalso a serious
concern with determining comparable units of measure alongwhich each of these
parameters varies. What we can do is spot asymptotic trends as these dimensions
grow very large to formulate a neutral appraisal of their cost in the limit. The
neutrality arises from our choice of implementation. The asymptotes allow us to
generalize without committing to a single choice of units.

Asymptotically, then, the relative costs of these variables, in decreasing order
are:

1. Static typability

2. Trailing

3. Chromatic density

4. Drag

5. Mesh

6. Arity growth

The relative ordering the same for fixed and variable frame allocation, although the
disparity between them does change.

There are a few surprises here. Arity growth, arguably the most distinctive as-
pect of the logic of typed feature structures relative to other record logics, actually
does not matter all that much. Also, (non-)static typability outranks even trail-
ing in cost. This is interesting because non-statically typable signatures can also
be unfolded so as to restore static typability, much in the same way that the En-
glish Resource Grammar’s type system was unfolded to eliminate various sources
of disjunction. Figure 7 shows the unfolding of Figure 6, forexample. The En-
glish Resource Grammar did not do this, however, perhaps because there is no ex-
plicit operator in the description language for typed feature logic that can be held
accountable for non-static typability. It arises from a conspiracy among several
sources of appropriateness constraints.

Just so, what makes disjunctions dangerous is their abilityto team up in net-
works to form NP-hard problems, not trailing specifically (although it is number
two on our list). In fact, the presence of disjunctions does not even necessitate a
backtracking search strategy.

4 Frame Allocation

Returning to the question of fixed vs. variable frame allocation, we can now con-
sider this in the context of the variables that have been proposed. This is achieved

197



Figure 7: Eliminating non-static typability

by rerunning the above experiments, but now allowing the underlying implemen-
tation of the unifier to vary between the two allocation methods. In the case of
the fixed method, graph colouring was used. The results are shown in Figure 8.
Looking at both of the extremal cases, Figure 9 shows our experimental timings

Figure 8: The influence of each variable upon the choice of fixed vs. variable frame
allocation.

as the number of unused feature value slots increases for both the fixed and vari-
able approaches when all of the variables are set to values that favour the variable
approach. In this circumstance, the variable approach is clearly better. Figure 10
shows the same as the total number of features increases whenall of the variables
are set to values that favour the fixed approach. Here, the fixed approach is better,

198



Figure 9: Experimental timings with every variable set to favour variable frame
allocation.

but not by as wide of a margin. To illustrate the relative importance of trailing, Fig-
ure 11 shows the same measurement when all of the variables are set to the same
values (favouring fixed), except that trailing on just one choice point is added.
The presence of more trailing favours the variable approach. This one variable
is enough to tip the balance. By the time the number of features exceeds 200, the
fixed approach in this experiment was slower, in spite of the other variable settings.
Figure 12 shows the same sort of inversion when the variablesare all set to favour
the fixed approach except that no pair in the unified types was statically typable.
No other single variable setting results in an inversion on the size of features that
we tested.

Turning to the English Resource Grammar again, Callmeier (2001) tells us that
the variable approach is better with this grammar than a fixedapproach with no
graph colouring. Why might this be? The ERG is not at all statically typable
(favouring the variable approach), has a very limited amount of trailing (fixed), a
relatively high chromatic density across its different modules (variable), low drag
(fixed), high mesh (variable), but fast arity growth (variable). We cannot simply
count the properties that favour one or the other and decide on that basis — cru-
cially, all of these are weighted by the empirical distribution of unification opera-

199



Figure 10: Experimental timings with every variable set to favour fixed frame al-
location.

tions over pairs of types for the corpus that we use to evaluate the ERG. We did not
calculate those weights. For what it is worth, however, the supervening importance
of static typability and trailing provides no clear answer to this question, and in
fact, the ERG is significantly faster with the fixed approach that ALE 4.0 intro-
duced than with its earlier variable approach. ALE is written in Prolog, and there
are doubtlessly many aspects of the Prolog compiler that favour the fixed strategy
since Prolog terms themselves have fixed arities. Nevertheless, this does suggest
that perhaps there is nothing about the ERG that strongly militates against either al-
ternative, and that the choice in the case of ERG implementations ultimately hinges
upon other design decisions.

5 Conclusion

We have identified a collection of the source-code level correlates of memory man-
agement costs evident in unifying typed feature structures. Since we can under-
stand these primarily as structural properties pertainingto signatures (subtyping
plus appropriateness conditions), they have the promise toguide grammar develop-
ers as well as system developers in building more efficient parsers. The structural

200



Figure 11: Experimental timings with every variable set to favour fixed frame al-
location except trailing. One choice point is used.

properties complement our ability to embed grammars into existing systems and
test their time and space efficiency on corpora. Static typability and trailing appear
to be the most significant of these variables, in that by themselves they have the
ability to override the settings of all of the other variables.

With respect to the specific issue of whether to use fixed-sized frames or variable-
sized frames (that must then be resized), we can classify each of these variables
according to its preference. With respect to the even more specific issue of which
strategy to use with the ERG, we are unable to make a definite conclusion. Very
clearly, the next step in demonstrating the value of our proposed sort of analysis
would be to collect distributional data from the unifier input during parsing with
a large grammar like the ERG, in order to show that our static analysis combined
with these empirical data have the ability to definitively predict various resource
consumption aspects of the parsing task.

References

Callmeier, U. 2001.Efficient Parsing with Large-Scale Unification Grammars.
Masters Thesis, Universitaet des Saarlandes.

201



Figure 12: Experimental timings with every variable set to favour fixed frame al-
location except static typability. No pair of unified types was statically typable.

Carpenter, B. and Penn, G. 1996. Compiling Typed Attribute-Value Logic Gram-
mars. In H. Bunt and M. Tomita (eds.),Recent Advances in Parsing Technolo-
gies, pages 145–168, Kluwer.

Copestake, A. and Flickinger, D. 2000. An open-source grammar development
environment and broad-coverage English grammar using HPSG. In Proceedings
of the Second conference on Language Resources and Evaluation (LREC-2000).

Goetz, T. 1993.A Normal Form for Typed Feature Structures. Masters Thesis, Uni-
versität Tübingen.

Makino, T., Torisawa, K. and Tsuji, J. 1998. LiLFeS — Practical Unification-
Based Programming System for Typed Feature Structures. InProceedings of the
36th Annual Meeting of the Association for Computational Linguistics and the
17th International Conference on Computational Linguistics (COLING/ACL-
98), volume 2, pages 807–811.

Penn, G. 1993.A Utility for Typed Feature Structure-based Grammatical Theories.
Masters Thesis, Carnegie Mellon University.

Penn, G. 1999. An Optimized Prolog Encoding of Typed FeatureStructures.
In Proceedings of the 16th International Conference on Logic Programming
(ICLP-99), pages 124–138.

202



Penn, G. 2000.The Algebraic Structure of Attributed Type Signatures. Ph. D.thesis,
Carnegie Mellon University.

Penn, G. 2004. Balancing Clarity and Efficiency in Typed Feature Logic through
Delaying. InProceedings of the 42nd Annual Meeting of the Association for
Computational Linguistics (ACL-04), pages 240–247.

Penn, Gerald and Munteanu, Cosmin. 2003. A Tabulation-Based Parsing Method
that Reduces Copying. InProceedings of the 41st Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 200–207.

Steinicke, K. 2007.Memory Management for Logic Programming with Typed Fea-
ture Structures. Masters Thesis, Universität Tübingen.

203


