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Abstract

We consider two alternatives for memory management in tfpatlre-
structure-based parsers by identifying structural prigeof grammar signa-
tures that may be of some predictive value in determiningtiresequences
of those alternatives. We define these properties, sumendmizresults of a
number of experiments on artificially constructed signesurith respect to
the relative rank of their asymptotic cost at parse-time, experimentally
consider how they impact memory management.

1 Introduction

Memory management deals with organizing the compiled objeccomputer pro-
gram so as to consume less memory for the same amount of wdrén Yke over-
all memory consumption becomes so large that it swaps ousko better mem-
ory management can also make the compiled object conslgdiier. HPSG
parsing, particularly with large grammars such as the EhgResource Grammar
(Copestake and Flickinger, 2000), has a number of probleitts memory con-
sumption. Very often, parsing charts must be pruned or gfading must be ter-
minated early because the overall memory consumption igreat for a grammar
developer’s desktop computer.

Memory managers must decide how to allocate memory to ancagiph over
the course of an execution, detect when an application rgelorequires a certain
location in memory, and recycle locations that are no lomgded. A central
concern to all of these tasks is the size of the blocks of meitinat are allocated,
monitored and recycled.

Current HPSG parsers do have memory managers — relying oopat-
ing system is simply not an option. The ALE system (Carpeatet Penn, 1996)
uses SICStus Prolog’s memory manager, and the LKB (Copesiadk Flickinger,
2000) uses Allegro Common Lisp’s memory manager. PET (Ga#m2001) ac-
tually comes with a few options, including using pools of éx&ze memory blocks
a la C++, a Windows-style virtual memory manager, and aiap2estack version
of the model that Prolog uses. LiLFeS (Makino et al., 1998 it own mem-
ory manager for logic programming with typed feature suites$, which at least
in early versions of that system, put its performance wdfiife that of SICStus
Prolog (Penn, 2000).

In the context of HPSG parsing, the central memory managequarstion has
been whether to (re-)allocate memory for feature strusturdlocks that exactly
correspond to the arity of their current type (a block cassi$ an encoding of the
type plusn pointers to each of the appropriate feature values for that type) or to
allocate it in blocks that are, on occasion, larger or sméflan what is currently
needed. The argument for adding extra space is connected snibtype polymor-
phism that is inherent to the logic of typed feature strieduiVhile each type does
have a fixed arity of features appropriate to it, that type tmapromoted to a sub-
type, whereupon it may acquire more such features. If extaaesis allocated to
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the feature structure at the outset, fremethat stores the type and pointers to the
appropriate feature values does not need to be resized,dooveallocated. The
argument for allocating less space is equally compelliggeeially when certain
feature values can be inferred from context. There is, ity tagreat experimental
evidence that in large practical grammars, it pays even-tterive certain feature
values as needed. Research on this began with Goetz's wdheofroll system
(Goetz, 1993), in which he coined the teumfilling, and nearly every system for
HPSG parsing since then has experimented with some formisof the will not
discuss unfilling more in this paper; for the purposes of ¢higly, one can either
leave even more cells empty or tighten the representatioaeveap further, so the
same choice that we address here remains present even whikmgus used.

Most of the previous work on “memory management” in HPSGipgrkas fo-
cussed on specialized unification algorithms for this thgk &avoid copying. While
these exert a great influence upon the operating conditibtiseamemory man-
ager, they do not by themselves manage memory, nor do thepletaly answer
the central question posed above: what the size of the élddeames should be.
Lower-level research that directly pertains to that quesis far more sparse and
what there is is mostly anecdotal. Penn (2000) experimeniidwvhat he called a
variable approach, in which the number of available feature slotsexastly the
number of appropriate features to the current type, afixedapproach, in which
enough extra space was allocated, as determined by a coadsgamization of the
type signature and a graph colouring algorithm, to guaeatitat the frame would
never need to be relocated. He tested both of these on twamaesn the ALE
HPSG grammar (Penn, 1993) 93), in which the fixed approachsiigigly better,
and a categorial grammar written in typed feature logic fer telephone bank-
ing domain from Bell Labs, in which the fixed approach was iicgntly better.
Callmeier (2001) also experimented with a fixed and varialpiproach, although
his description of his fixed approach involved modularizativith no graph colour-
ing. He found that the variable approach worked better orEtinglish Resource
Grammar, and that the fixed approach worked slightly betighe Japanese Verb-
mobil grammar. While it is clear from both theses that thénarg appreciated that
the signatures and the distribution of feature structukes types played a very
prominent role in determining which method was better,hegiteaves the reader
with any indication of what it specifically is about those regures that would
favour either of these approaches.

Our purpose in undertaking the study described here hastbemmplement
this earlier work on real grammars by testing both approaarea range of an-
alytically formulated signatures with very controlled cheteristics. This control
allows us to determine some of the various dimensions of & $ygnature’s com-
plexity that influence whether the fixed or variable approadhbe more bene-
ficial. Real grammars are still important, as are the cormoravhich they are
evaluated, because these provide the empirical distiiitbver these characteris-
tics that determine the weights on these analytic varisdddaiey combine to yield
the overall cost of the memory management strategy used.b&iaf, however,
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is that the study of real grammars was perhaps prematurer t®rihe present
study, we did not even know what the variables were — henceliligue timings
reported in previous work on this subject.

Some of those variables are very task-specific, actually. ekample, chart
parsing isO(n"MG242), and the number of edge accesses is known to be in-
fluenced by the edge’s position and the parsing controlegtyatWe focussed on
unification. This is important to everyone who uses feattmectures. HPSG has
the added benefit of a type system for its feature structuvbgh allows us to
do more static analysis and less empirical analysis thanaimgnar formalisms in
which their untyped historical precursors are used.

The potential benefits of this direction of research are tbf First, it can
serve as a guide to grammar writers, so that they may be alleotuse more ef-
ficient encodings of linguistic constructions in signaynehen several acceptable
ones present themselves. Second, it can serve as a guidgdmsyjevelopers, who
will be able to produce smarter, more flexible compilers —hpes some day ones
that generate code which adapts its representations oféestructures in response
to the empirical distributions measured over several ob#ii@bles proposed here.

Section 2 enumerates the variables that we tested, anuales how some sim-
ple signatures change as a result of varying these dimensfaignature structure.
Section 3 discusses the results of our experimental cosgadf these variables,
and Section 4 then focusses on the specific issue of fixed kiablaframe allo-
cation, and how these variables influence that choice. Tdrisbe seen as a case
study in how these variables, and a static analysis of theaige more generally,
can provide us with a deeper understanding of how grammaia/be

2 Dimensionsof Signature Structure

We measured the effects of varying each of the following disnens of a signa-
ture’s structure, both individually and together.

2.1 Arity Growth

Arity growth refers to how quickly a subtype chain confersliidnal appropriate
features onto its types as a function of height. The sigeaiturFigure 1(a) has
faster arity growth than the signature in Figure 1(b). Bdithcate the same number
of appropriate features to their maximally specific type,Figure 1(b) does so one
at a time through a longer chain.

2.2 Chromatic density

Signatures with a high chromatic density have more diffepairs of features that
are appropriate to a single type than signatures with lowrolatic density. In
Figure 2(a), for example, the paksands, B andc, anda andc are all appropriate
to some common type (three of them in each case, actualliy eand f). In fact,
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Figure 1: An illustration of (a) fast arity growth vs. (b) sl@rity growth.

all three together are appropriate to a common type. In Ei@(p), on the other
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Figure 2: An illustration of (a) high chromatic density vB) (ow chromatic den-
sity.

hand, there are still three features, but we will never find ohthem in a feature
structure where another is appropriate.

Signatures with low chromatic density require smaller feann the fixed ap-
proach than signatures with high chromatic density (Pe®@91L

2.3 Drag

Drag is related to chromatic density, but is also effectetiday high within subtype
chains the feature introducers are situated. In Figure a(fed approach would
need to assign as large of a framentaas it does tay, in spite of the fact thain
has no appropriate features of its owm. has a higher drag there than it has in
Figure 3(b), because in Figure 3(b), it could use every Gt it is allocated by a
fixed approach, in spite of the fact that its frame would bestiae size.

24 Mesh

Mesh determines how many corresponding feature values beuftecursively)
unified when two feature structures having a particular pailypes are unified.
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Figure 3: An illustration of (a) high drag vs. (b) low drag.

The pairs and‘ has a higher mesh in the signature of Figure 4(a) than it does i
that of Figure 4(b), because, while they both have threecgpiatte features defined

Figure 4: An illustration of (a) high mesh vs. (b) low mesh.

in both signatures, their sets of features are disjoint gufra 4(b).

2.5 Static Typability

In a statically typable signature, the successful unificedif two well-typed feature
structures is always well-typed. In a non-statically typagignature, the results
of successful unifications must be checked to ensure thataiee Figure 5 is a
statically typable signature. Figure 6 is very close to Fédr but it is not statically
typable, because the result of unifying feature structofetypess andt¢, even
when successful, may not yield a feature structure that asvalue of typee. If
successful, it will always yield a value atthat is consistent with in the absence
of inequations and extensional types, so it is often welhbte, even when not
well-typed, but the addition of an extra maximally specifibtype ofd to the
signature could easily prevent even that. Non-staticglbable signatures require
more work to unify, in general.

Usually, we speak of an entire signature being staticafhalbye or not, but we
can easily generalize this to a degree of static typabilitgdunting the number or
percentage of type pairs for which unification would requims extra amount of
type checking.
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Figure 6: A non-statically typable signature.

2.6 Trailing

Trailing refers to the overhead of tracking a sequence oflsthanges to a data
structure in memory (&ail) so that they can be undone in reverse order. Applica-
tions of backtracking search strategies often employ thithe context of feature-
structure-based all-paths parsing, backtracking cae assa result of description-
level disjunctions, subtype declarations in which a type im@re than one imme-
diate subtype (at least in some interpretations of subtypilogic programs with
predicate-level disjunctions or multiple clause defimgpor phrase structure rule
systems in which the left-hand-side categories of two oramoles are unifiable.
Chart parsers almost by definition prefer the cost of strectwpying to the
cost of backtracking found in shift-reduce parsing, forrapée. Even within chart
parsers, however, there are aspects of access to the pelnsirtgelative to which
copying vs. trailing again trade off. This latter trade-b#fs been ignored for the
most part, mainly because the re-discovery of dynamic pragning within the
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computational linguistics community happened to coineidd an infatuation for

Prolog implementations of parsers, within which this kirfigecise control over
chart access was not available without a considerably greahount of effort

(Penn and Munteanu, 2003). Even with that effort — or withBublog — the

choice of copying vs. trailing is more crucial and more cadogied to optimally

resolve in the case of feature-structure-based parsingubecof the size of the
feature structures.

As for the other potential sources of backtracking, andetfoee trailing, the
trend within the HPSG community over the last thirteen or engears has been
to mercilessly hunt them down and eliminate them. The EhdRssource Gram-
mar at its inception deliberately ruled out the use of exptisjunction operators,
at the description or predicate level, for the sake of boficiehcy and portabil-
ity. The LKB, PET and later parsers adopted what was, at the,tALE’s very
anomalous interpretation of subtyping and constraintlugiem in order to back
away from potentially very costly backtracking searchasjously without the
logic programming mechanisms that one needs in order to rimakeconstraint
resolution strategy sound and complete. We will return i tibpic in Section 3.

We did not measure the cost of delaying (Penn, 2004).

3 Reative Cost

Given an abstract signature, such as one of the example®,abod a skeletal
parsing control program, both of which can be modified to peatelently vary all of
the parameters given in the last section, plus a constamriyimt implementation
of the unifier, we may first ask which parameter is inherenttyrarcostly than the
other. Given a choice between making a grammar less chreoatigtilense or more
statically typable, for example, which of these directiohdevelopment will result
in a faster parser?

Itis very difficult, and perhaps impossible, to answer thisgtion in a way that
generalizes over all grammars and all implementations.panger implementation
used in these experiments is described in great detail ini&e (2007). ltis a
reimplementation of the Warren Abstract Machine, modifie@perate on typed
terms that allow for subtype polymorphism, arity growth awaah-static typability.
It is written in C++ and was compiled with GNU C++ 4.1. All ofdtexperimental
runs described in this paper were run on an AMD athlon 64/300 512 MB
of RAM, and were iterated for 200,000 unifications per sirngiee measurement
reported. Approaching the implementation at this very lewel allows us to rule
out parochial properties of the memory managers used irehigliel program-
ming languages, and focus on a single, fairly neutral impletation. The one
very strong, although still common assumption made is tt@aking (non-chart-
edge) memory is allocated from a global stack that we maintaikeeping with
the architecture of the WAM. So we are doing something ty@iod reasonable, if
not generalizable.
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The base signature and parsing control are also descrikgiimcke (2007).
All of the experiments reported involve modifying aspectshese to vary the
number of unifications, number of trail unwindings, sizelod feature structures,
etc. Again, this does not generalize over all grammars ihgiiists write, nor even
look similar to a single grammar of a human language. Thegdsis a serious
concern with determining comparable units of measure alamgh each of these
parameters varies. What we can do is spot asymptotic trentleeae dimensions
grow very large to formulate a neutral appraisal of theirtdosthe limit. The
neutrality arises from our choice of implementation. Thegngstotes allow us to
generalize without committing to a single choice of units.

Asymptotically, then, the relative costs of these variable decreasing order
are:

. Static typability
. Trailing

1
2
3. Chromatic density
4. Drag

5

. Mesh

6. Arity growth

The relative ordering the same for fixed and variable frarteeation, although the
disparity between them does change.

There are a few surprises here. Arity growth, arguably thetrdistinctive as-
pect of the logic of typed feature structures relative teeotiecord logics, actually
does not matter all that much. Also, (hon-)static typabibutranks even trail-
ing in cost. This is interesting because non-staticallyabfe signatures can also
be unfolded so as to restore static typability, much in theessvay that the En-
glish Resource Grammar’s type system was unfolded to elitmivarious sources
of disjunction. Figure 7 shows the unfolding of Figure 6, é&xample. The En-
glish Resource Grammar did not do this, however, perhapsusechere is no ex-
plicit operator in the description language for typed featiogic that can be held
accountable for non-static typability. It arises from a sginacy among several
sources of appropriateness constraints.

Just so, what makes disjunctions dangerous is their akbilitgam up in net-
works to form NP-hard problems, not trailing specificalljtifaugh it is number
two on our list). In fact, the presence of disjunctions doesaven necessitate a
backtracking search strategy.

4 Frame Allocation

Returning to the question of fixed vs. variable frame all@rgatwe can now con-
sider this in the context of the variables that have beenqa®eg. This is achieved
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Figure 7: Eliminating non-static typability

by rerunning the above experiments, but now allowing thesdgiohg implemen-
tation of the unifier to vary between the two allocation meholn the case of
the fixed method, graph colouring was used. The results angrsin Figure 8.
Looking at both of the extremal cases, Figure 9 shows ourrexpatal timings

Fixed 4 Static typability Fixed 4 Slow growth
Variable Non-static typability Variable Fast growth

Fixed No trailing Fixed Low mesh
Variable $ Trailing Variable ¢ High mesh

Fixed Low chromatic density Fixed Low drag
Variable ¢ High chromatic density Variable ¢ High drag

Figure 8: The influence of each variable upon the choice ofifiise variable frame
allocation.

as the number of unused feature value slots increases forthe{fixed and vari-
able approaches when all of the variables are set to valaesatiour the variable
approach. In this circumstance, the variable approactearlgl better. Figure 10
shows the same as the total number of features increasesalltoéithe variables
are set to values that favour the fixed approach. Here, the eigproach is better,
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Figure 9: Experimental timings with every variable set teoiar variable frame
allocation.

but not by as wide of a margin. To illustrate the relative imigoce of trailing, Fig-
ure 11 shows the same measurement when all of the varialdessefto the same
values (favouring fixed), except that trailing on just on®ick point is added.
The presence of more trailing favours the variable approalis one variable
is enough to tip the balance. By the time the number of feataxeeeds 200, the
fixed approach in this experiment was slower, in spite of therovariable settings.
Figure 12 shows the same sort of inversion when the variakeall set to favour
the fixed approach except that no pair in the unified types vaEally typable.
No other single variable setting results in an inversiontendize of features that
we tested.

Turning to the English Resource Grammar again, Callme@ptells us that
the variable approach is better with this grammar than a fagatoach with no
graph colouring. Why might this be? The ERG is not at all stdly typable
(favouring the variable approach), has a very limited amaftrailing (fixed), a
relatively high chromatic density across its different mied (variable), low drag
(fixed), high mesh (variable), but fast arity growth (vatgb We cannot simply
count the properties that favour one or the other and decaidbat basis — cru-
cially, all of these are weighted by the empirical distribatof unification opera-
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Figure 10: Experimental timings with every variable setaedur fixed frame al-
location.

tions over pairs of types for the corpus that we use to evaliinet ERG. We did not
calculate those weights. For what it is worth, however, tigesvening importance
of static typability and trailing provides no clear answerthis question, and in
fact, the ERG is significantly faster with the fixed approaaattALE 4.0 intro-
duced than with its earlier variable approach. ALE is writte Prolog, and there
are doubtlessly many aspects of the Prolog compiler thaufathe fixed strategy
since Prolog terms themselves have fixed arities. Neversbgethis does suggest
that perhaps there is nothing about the ERG that stronglyateit against either al-
ternative, and that the choice in the case of ERG implementatltimately hinges
upon other design decisions.

5 Conclusion

We have identified a collection of the source-code levelgtates of memory man-
agement costs evident in unifying typed feature structufiace we can under-
stand these primarily as structural properties pertaitingignatures (subtyping
plus appropriateness conditions), they have the promigaitte grammar develop-
ers as well as system developers in building more efficierggra. The structural
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Figure 11: Experimental timings with every variable setaedur fixed frame al-
location except trailing. One choice point is used.

properties complement our ability to embed grammars intstieg systems and
test their time and space efficiency on corpora. Static tijipabnd trailing appear
to be the most significant of these variables, in that by tiedvas they have the
ability to override the settings of all of the other variable

With respect to the specific issue of whether to use fixedddizenes or variable-
sized frames (that must then be resized), we can classity efathese variables
according to its preference. With respect to the even maeeifip issue of which
strategy to use with the ERG, we are unable to make a definiteligion. Very
clearly, the next step in demonstrating the value of our gsep sort of analysis
would be to collect distributional data from the unifier ingluring parsing with
a large grammar like the ERG, in order to show that our stat#dysis combined
with these empirical data have the ability to definitivelygict various resource
consumption aspects of the parsing task.
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