
Automatic construction of Korean
verbal type hierarchy using Treebank

Sanghoun Song
Korea University

Jae-Woong Choe
Korea University

Proceedings of the 15th International Conference on
Head-Driven Phrase Structure Grammar

National Institute of Information and Communications Technology, Keihanna

Stefan Müller (Editor)

2008

Stanford, CA: CSLI Publications

pages 204–221

Song, Sanghoun & Jae-Woong Choe. 2008. Automatic construction of Korean
verbal type hierarchy using Treebank. In Stefan Müller (ed.), Proceedings of the
15th International Conference on Head-Driven Phrase Structure Grammar, Na-
tional Institute of Information and Communications Technology, Keihanna, 204–
221. Stanford, CA: CSLI Publications. DOI: 10.21248/hpsg.2008.12.

https://orcid.org/0000-0002-4234-232X
https://orcid.org/0000-0001-5224-2229
http://doi.org/10.21248/hpsg.2008.12
http://creativecommons.org/licenses/by/4.0/

Abstract

The lexical information of verbal lexemes, such as verbs and

adjectives, plays an important role in syntactic parsing, because

the structure of a sentence mainly hinges on the type of verbal

lexemes. The question we address in this research is how to

acquire the ‘argument structure’ (henceforth ARG-ST) of verbal

lexemes in Korean. It is well known that manual build-up of

type hierarchy usually cost too much time and resources, so an

alternative method, namely automatic collection of relevant

information is much more preferred. This paper proposes a

procedure to automatically collect ARG-ST of Korean verbal

lexemes from a Korean Treebank. Specifically, the system we

develop in this paper first extracts lexical information of ARG-

ST of verbal lexemes from a 0.8 million graphic word Korean

Treebank in an unsupervised way, checks the hierarchical

relationship among them, and builds up the type hierarchy

automatically. The result is written in an HPSG-style

annotation, thus making it possible to readily implement the

result in an HPSG-based parser for Korean. Finally, the result

is evaluated with reference to two Korean dictionaries and also

with respect to a manually constructed type hierarchy.

1 Introduction

One of the key issues in writing a comprehensive grammar of a natural

language in the HPSG style is how to build up type hierarchies on a large

scale. In particular, since the lexical information of verbal lexemes, such as

verbs and adjectives, takes an important role in syntactic parsing, argument

structures (hereafter ARG-STs) hold the key position in describing a grammar

within the HPSG framework, so building up type hierarchies on a large scale

should begin with collecting relevant information about ARG-ST.

What we are concerned with in this study is how to build up the

verbal type hierarchy in a more efficient way. It is well known that type

hierarchy built-up manually usually cost too much time and resources;

therefore an alternative method, namely automatic compilation of relevant

information is much more preferred.

This study aims to introduce a systematic procedure to collect

†
 We would like to thank to Jong-Bok Kim, Kiyong Lee, and Jieun Jeon♡for their

help throughout this research. We appreciate the comments on an earlier version of

this paper from anonymous readers, and also are thankful for the comments from

Hans Uszkoreit, Dan Flickinger, Laurie Poulson, and some other members of the

audience during the HPSG conference held at Keihanna, Japan. July 28-30, 2008.

Of course, all remaining errors are our own responsibilities.

205

relevant ARG-STs in Korean verbal system, and to construct the Korean

verbal type hierarchy. The procedure will be carried out in a fully automatic

way. The data compilation will be based on the results extracted from the

Sejong Korean Treebank.

This paper is constructed as follows. Chapter 2 provides a brief

comparison of ways to extract information of ARG-STs, namely, a traditional

manual extraction from dictionaries vs. an automatic extraction from large

scale language resources adopted in this study. In chapter 3, we introduce

the whole process to get relevant ARG-STs from a Korean Treebank and

build up Korean verbal type hierarchy in a systematic and automatic way.

Chapter 4 discusses the evaluation of the result of this study with reference to

two dictionaries and also with reference to a manually constructed verbal

type hierarchy. Chapter 5 is the conclusion of this paper.

2 The Treebank Approach

One way to collect the ARG-ST information of Korean verbal items in a

comprehensive way would be to consult the dictionary. For example, the

Yonsei Korean Dictionary
1
 lists the following three types of construction for

the adjective elyep- ‘difficult’, a typical ‘tough’ class verb in Korean.
2

(1) a. enehak-i elyep-ta.

 linguistics-NOM difficult-DC

 ‘Linguistics is difficult.’

b. nay-ka kongpwu-ka elyep-ta.

 I-NOM study-NOM difficult-DC

 ‘It is difficult for me to study.’

c. enehak-ul kongpwu-ha-ki-ka elyep-ta.

 linguistics-ACC study-LV-NMS-NOM difficult-DC

 ‘It is difficult to study linguistics.’

The examples in (1) shows that elyep- ‘difficult’ can be divided into several

types according to its ARG-ST; <NP(nom)>, <NP(nom), NP(nom)>, and

<S(nom)>, which correspond to (1a-c) respectively.

An alternative way to collect ARG-ST information on a large scale

1
 The verbal category in this dictionary covers 49,552 entries altogether.
2
 The abbreviations of this paper are as follows.

ACC: Accusative case marker, COMP: Complementizer affix, DAT: Dative

case marker, DC: Declarative sentence-type marker, DET: Determiner, DIR:

Directive case marker, LOC: Locative case marker, LV: Light verb, NOM:

Nominative case marker, NMS: Nominalizer suffix, PAST: Past tense

marker

206

is to make use of some available corpora or Treebanks.
3
 Compared to the

dictionary based approach, the Treebank approach has at least two obvious

advantages. The first is that the Treebank approach would provide the

frequency for each ARG-ST as well, which would become crucial for

building a stochastic parser. Another advantage of the Treebank approach is

that we can minimize the inconsistency or some possible errors in the

compilation process of the dictionary. For example, it is up to the judgment

of the compiler(s) that she or he selected the three constructions given in (1)

for elyep-; other compiler(s) could have added another to (1), or even

excluded one from (1). In fact, a different dictionary, the Sejong Electronic

Dictionary,
4
 lists six different case frames for the same adjective, and in

general it is not an easy task to pinpoint the source of the difference.

There are two Korean Treebanks currently available; the Sejong

Korean Treebank (henceforth SKT) which has been sponsored by the Korean

government and the Penn Korean Treebank (henceforth PKT) which has been

researched at the Univ. of Pennsylvania. The major characteristics of the

two are as follows: (i) SKT contains approximately eight hundred thousand

graphic words consisting of various genres (e.g. novels, academic articles,

etc.), while PKT includes about two hundred thousands of graphic words,

which is only composed of military manuals or newspaper articles. (ii) The

empty categories are specified in PKT, while there is no empty category in

SKT. (iii) Finally, oblique cases can be tagged as complements in PKT,

whereas in SKT they are excluded from being possible candidates for

complements. Between the two, we chose SKT for its size and the balance

in its composition. However, since SKT does not contain empty categories,

it should be noted that the result of this study would likewise be more

‘surface-oriented’.

An important problem one faces in dealing with the ARG-ST of the

Korean language is the difficulty of differentiating arguments from adjuncts.

Korean, a typical pro-drop style language, allows any element of the sentence

be omitted, possibly except for the head. It is one of the most controversial

and tough issues in Korean Linguistics to distinguish arguments from

adjuncts in Korean as is well documented and discussed in the literature (e.g.

Chae 2000).

Consider the following.

3
 For example, Manning (1993) shows a method to acquire subcategorization frames

from unlabelled corpora. Sarkar and Zeman (2000) also make use of machine

learning techniques for the identification of subcategorization frames, using the

Prague dependency Treebank. They use some statistical measures, including t-score

that we also take advantage of in this study, in their solution to label dependents of a

verb as either arguments or adjuncts.
4
 The version used for this study contains 18,618 verbal items.

207

(2) a. Mia-ka yenphil-ul chayksang-eyta noh-ass-ta.

 Mia-NOM pencil-ACC desk-LOC put-PAST-DC

 ‘Mia put a pencil on the desk.’ (a complement)

b. Mia-ka yenphil-ul seylo-lo noh-ass-ta.

 Mia-NOM pencil-ACC length-DIR put-PAST-DC

 ‘Mia put a pencil lengthwise.’ (an adjunct)

According to the Yonsei Korean Dictionary, the ARG-STs of noh- ‘put’ are

<NP(nom), NP(acc), NP(loc)> or <NP(nom), NP(acc)>. Thus, sentence (2a)

corresponds to the first ARG-ST that contains a locative case, while sentence

(2b) corresponds to the second one without any oblique complements. That

is, chayksang-eyta ‘on the desk’ in (2a) is a complement of noh, whereas

seylo-lo ‘lengthwise’ in (2b) is a mere adjunct according to the standard view.

However, both chayksang-eyta and seylo-lo are tagged as ‘NP_AJT’ in SKT.

The same problem, though in a lot less degree, crops up in English

as is well known. Let us consider ‘put’ class verbs in (3) taken from Levin

(1993:111). According to Levin’s explication, sentence (3b) and (3c) sound

deviant because the obligatory arguments are omitted. That is, in this

example, ‘on the desk’ functions as a complement.

(3) a. ‘John put the book on the desk.’

b. *‘John put on the desk.’

c. *‘John put the book.’

This kind of linguistic phenomenon has to be taken into consideration in

automatic acquisition of the argument structures from corpora. For example,

Manning (1993) raises the need for some methodology to verify whether the

prepositional phrase ‘on the table’ in (4) must be an argument of the verb ‘put’

or not.

(4) ‘John put [NP the cactus] [PP on the table].’

In other words, a systematic approach is required to divide dependents of

verbs into arguments or adjuncts, even when obtaining argument information

automatically.

As a way to cope with this problem of the argument-adjunct

distinction, we took a practical, construction based approach in this study.

We first took the ARG-ST in its broadest sense, thus including every possible

NPs, VPs, and Ss that are dependent on a predicate. From the resulting set

of candidates (i.e. dependents), we selected only the significant ones as

argument structures of the predicate by introducing a statistical method. In

a sense we adopted a construction-based method relying on the frequency of

the relevant construction. Note that we do not distinguish arguments from

adjuncts in its original sense, nor we distinguish between oblique cases from

208

grammatical cases. This again reflects our surface-oriented and frequency-

based approach.

In counting the frequency of ARG-ST, we excluded the verbs or

adjectives in the so-called relative clauses in Korean. Relative clauses can

raise a troublesome issue in terms of extracting subcategorization frames

from corpora, because one of the arguments appears outside of the relative

clauses. Unfortunately, there is no way to retrieve its case or functional

information with respect to the verbal element in relative clauses. We

therefore excluded the verbs or adjectives in relative clauses. Those cases

account for approximately 7.5% of all verbal elements in the SKT.

3 Implementation

In this section, we will introduce our basic methodology, step by step, to

construct a verbal type hierarchy automatically.

We processed data in Treebanks on the basis of the ‘Parse-Tree’

algorithm. Data structure of the ‘Parse-Tree’ algorithm
5
 consists of three

elements; the mother node (MN), the left daughter node (LDN), and the right

daughter node (RDN). Figure (5) represents a typical ‘Parse-Tree’ structure.

(5)

The first S is the MN of its LDN AP, and its RDN S, while the RDN S, the

second S in the tree, is the MN of its LDN NP_SBJ and its RDN VP at the

same time. In brief, every node is linked to the head node in a hierarchic

binary form.
6

One of the most prominent distributional characteristics of CFG

rules in SKT is that the MN depends upon the RDN almost invariably, which

directly reflects the fact that Korean belongs to head-final languages.

Therefore, the search paths to extract arguments from a tree structure will be

as in the following pictures (6), (9) and (14).

(6) illustrates the main process to acquire arguments with

grammatical cases, such as nominatives or accusatives; if a node includes a

5
 Technically speaking, the ‘Parse-Tree’ algorithm is grounded upon a stack on the

principle of ‘Last In First Out’ (LIFO). The stack has two basic operations; ‘push’

and ‘pop’. The former adds a new node to the top of the stack, and the latter removes

and returns the top node on the stack.
6
 SKT adopted a strict binary format for its hierarchical analyses.

209

verb ‘VV’ or an adjective ‘VA’, the node is the starting position for a search.

(6)

The algorithm traverses up the tree, checking the left node of its ancestor

nodes repeatedly, and collecting relevant cases: if the left node can be a

member of ARG-ST of the verbal lexeme, the node becomes an element of

candidate set of ARG-ST. Since information about the function, such as

‘SBJ’ or ‘OBJ’, is annotated on each node in SKT in most cases, this process

can be carried out with consistency. For instance, let us take a look at

sentence (7) in which a typical transitive verb is used. The corresponding

tree derivation will be as (8).

(7) John-i chayk-ul ilk-ta.

John-NOM book-ACC read-DC

‘John reads a book.’

(8)

NP VP

ilk-

 , STARG-

v-lxm

 COMPS

 SUBJ
 VAL

VP

chayk-ul

S

NP
[]nom CASE.GCASE

John-i
[]cc CASE.GCASE a

1 2

ilk-ta
1

2

2

1

V

In (8), VP that contains the main verb ilk- ‘read’ will be the starting point.

First, chayk ‘book’ with an accusative case is taken as a relevant dependent of

ilk-, and next, ‘John’ in the subject position is also taken. After going

through further procedure, <NP(nom), NP(acc)> is added as an ARG-ST of

the verb ilk-.

210

Next, (9) indicates how the candidate set of ARG-ST takes NPs

with oblique cases as its element. If a left node of an ancestor node of

verbal lexeme is tagged as ‘AJT’, the node becomes the starting point.

(9)

Since oblique cases in Korean largely hinge on postpositions attached to NP

just as oblique cases in English hinge on prepositions, if the final RDN

contains a postposition, the final node also becomes an element of candidate

set. Oblique cases in Korean determined by postpositions are given in the

table below, which is adapted from Sohn (1999:213).

case postposition meaning

dative ey, eykey, hanthey, tele… ‘to’

locative ey, eykey, hanthey, eyta… ‘on,at,in’

source eyse, eykeyse… ‘on,at,in’

ablative pwuthe, lopwuthe , sepwuthe… ‘from’

directive lo, ulo… ‘towards’

instrumental lo, ulo, ulosse… ‘with’

comitive wa, kwa, hako, lang… ‘with’

connective mye, imye, wa, na… ‘in addtion to, and ,or’

comparative pota ‘than’

equative chelem, kathi, mankhum… ‘as, like, as much as’

Table 1 : Postpositions in Korean

On the basis of the above, some heuristic assumptions to substitute a

postposition with its representative form are taken as a way to deduce

representative types of oblique cases. Let us take an example that includes

an oblique noun phrase. In (10), chayksang-eyta ‘on the desk’ is coded with

a locative case.

211

(10) Mia-ka yenphil-ul ku chayksang-eyta noh-ta.

Mia-NOM pencil-ACC DET desk-LOC put-DC

‘Mia puts a pencil on the desk.’

In this case, it would be more plausible to regard this NP as a complement of

the main verb, as was discussed in Section 2, though it is annotated as an

adjunct in SKT. (11) stands for the derivation of (10).

(11)

NP

VP

noh-

VP

yenphil-ul

S

NP
[]nom CASE.GCASE

Mia-ka []cc CASE.GCASE a

noh-ta

2

1

V

NP

VP

chayksang-eyta

[] loc CASE.SCASE3

 , , STARG-

v-lxm

1 2 3

 , COMPS

 SUBJ
 VAL

1

2 3
NPDP

ku

[] loc CASE.SCASE

Based on our search path to collect dependents, in the above structure, the NP

3 will be the starting point. And then, the search path goes through its

right daughter, finding a postposition such as a locative case marker -eyta. As

a result of the previous and this procedures, <NP(nom), NP(acc), NP(loc)>

will be added as an ARG-ST of the verb noh- ‘put’. Essentially, the

compilation of oblique dependents, in our system, largely depends on the

appearance of postposition.

The third search path is for rather troublesome cases, such as

complex predicates which consist of a verb plus an auxiliary. In that case,

the ARG-ST of the sentence is determined by the main verb. Kim (2004)

provides an analysis of Korean auxiliary constructions within the HPSG

framework. According to his analysis, since what is responsible for the

argument structure in Korean complex predicates is not an auxiliary but the

main verb, the mother-category inherits the ARG-ST from the main verb

directly. For example, in (12), taken from Kim (2004), where mek- ‘eat’

combines with siph- ‘would like to’, both John and ppang ‘bread’ are

analyzed as arguments of mek-, not the auxiliary siph-, as presented in (13).

(12) John-i ppang-ul [v[vmek-ko] [vsiph-ta]].

John-NOM bread-ACC eat-COMP would like to-DC

‘John would like to eat bread.’

212

(13)

V
[] , ST-ARG

2
1 3

V
[] , ST-ARG 1 2

mek-ko siph-ta

1 3

V

 , ST-ARG

 HEAD verb

The starting point to collect dependents in complex predicates, therefore, is

different from the previous cases. In this case, the starting point of the

search path is the parent node of the verbal lexeme, which is marked as a

dark circle in (14).

(14)

(15)

NP VP

mek-

 , STARG-

v-lxm

 COMPS

 SUBJ
 VAL

VP

ppang-ul

S

NP
[]nom CASE.GCASE

John-i
[]cc CASE.GCASE a

1 3

mek-ko siph-ta
1

3

3

1

V

[]ko FORMSYN.HEAD.V

VP2

siph-

 , STARG-

v-lxm

1 2

V

VP

213

In the above diagram, which shows a kind of complex predicate, the starting

point turns into the upper node of both the main verb mek- ‘eat’ and the

corresponding auxiliary siph- ‘would like to’. Then, the same procedure as

in (6) will be applied so that we can get the pertinent ARG-ST of mek- as

<NP(nom), NP(acc)>, which are represented by 1 and 3 , respectively, in

the above diagram.

3.1 Algorithms

In order to handle the cases presented so far, we have implemented a

computer program module, coded in the ANSI C++ programming language.

There are two major algorithms to extract the candidate set of ARG-ST from

SKT; one is the ‘Parse-Tree’ algorithm given in (16), the other is the

‘Traverse’ algorithm to treat (6), (9), and (14). Let us look into the

algorithm of building up the ‘Parse-Tree’ structure.

(16) 1: parse_tree(n):

2: n→left = n→right = n→parent = NIL
3: if n is not a terminal node:
4: n→right = pop()
5: n→left = pop()
6: if n→left is NIL:
7: n→left = n→right
8: n→right = NIL
9: n→left→parent = n→right→parent = n
10: push(n)

If there is a new node which is not yet processed (line 1), the left of the node,

the right of the node, and the parent of the node are assigned a NULL value

(line 2). If the node is not a terminal node (i.e. a non lexical entry) (line 3),

the left and right of the node are assigned a value popped from the stack (line

4-5). Since there can be a node without its right, in that case (line 6), this

algorithm swaps left with right and assigns a NULL value to the right (line 7-

8). The current node naturally becomes the parent node of both its LDN

and its RDN (line 9). Finally, this algorithm pushes the node processed so

far into the stack in order to link with other nodes (line 10).

(17) and (18) are our ‘Traverse’ algorithms to collect relevant

elements of verbs or adjectives recursively. In (18), line 2 is for the third

search path represented in (14), line 5 is for the first search path in (6), and

line 6 is for the second search path for oblique cases, shown in (9).

(17) 1: traverse(n):

2: if n is not NIL:
3: get_argst(n→parent)
4: traverse(n→left)
5: traverse(n→right)

214

(18) 1: get_argst(n):

2: if next(n) is AUX: …(14)
3: n = n→parent
4: while n is not NIL:
5: get_arg(n→left) …(6)
6: get_postposition(n→right) …(9)
7: n = n→parent

Based upon these algorithms, we could extract dependents of verbal lexemes

from treebanks in an unsupervised way.

3.2 ARG-ST

Sets of ARG-ST of verbal lexemes extracted so far need further process for

two reasons. One is that SKT, as stated before, does not discern between

oblique NPs as arguments and those as adjuncts. Hence, it is necessary to

decide whether an oblique case is qualified to be an element of the ARG-ST

or not. The other is that there is no empty category in SKT; therefore, it is

not clear whether a surface ARG-ST is saturated with underlying arguments

or not. The previous studies that seek to acquire subcategorization frames

from corpora have proposed various solutions to this kind of puzzles.

Among them, Sarkar and Zeman (2000), who concentrate on filtering of

adjuncts from observed data, employ some stochastic techniques as a way to

distinguish valid ARG-STs from invalid ones. In line with their proposal, in

order to obtain ARG-STs on the basis of a single criterion, we also use a

statistical device, in particular, t-score since it is quite simple to apply and

suffices to our purpose. If the elements and their frequency value of each

ARG-ST of a verbal entry is given, t-score will be calculated on the basis of

the formula (19), where m is short for ‘the mean of frequencies,’ x means

‘each frequency,’ % stands for ‘the number of ARG-STs,’ and s is for ‘the

standard deviation of frequencies.’

(19)

s

%xm
t

)(

−
=

Then each t-score is compared with the cut-off value presented at 25%

significance level in the t-distribution table.
7
 If t-score is smaller than the

cut-off point, that means the ARG-ST is not meaningless; therefore, it is

regarded as one of the valid ARG-STs.

As an example of the selection process, let us take elyep- ‘difficult’.

7
 We tested a couple of cut-off values and settled with the given one for now as the

most appropriate one based on our intuition. It could be an arbitrary decision and

obviously needs further research, but the way the cut-off value applies to each verbal

lexeme is fixed and consistent.

215

It had originally 28 ARG-STs, as given in (19)
8
, before applying t-score.

(20) elyep/VA

<VP(nom)> 85

<NP(nom)> 49

<S(nom)> 11

<VP(nom), NP(dat)> 10

<NP(nom), NP(dir)> 6

<NP(nom), NP(dat)> 5

<NP(nom), VP(nom), NP(src)> 4

...

After applying t-score, however, only four ARG-STs are considered as

candidates for building up the type hierarchy, as shown below.

(21) elyep/VA

<VP(nom)> 85

<NP(nom)> 49

<S(nom)> 11

<VP(nom), NP(dat)> 10

Let us compare our result with the description of the same adjective

in the Yonsei Korean Dictionary, which was previously shown in (1). In

(22), we added ARG-ST information to each example in (1) for the purpose

of comparison with (21).

(22) a. <%P(nom)>

 enehak-i elyep-ta.

 linguistics-NOM difficult-DC

 ‘Linguistics is difficult.’

b. <%P(nom), %P(nom)>

nay-ka kongpwu-ka elyep-ta.

 I-NOM study-NOM difficult-DC

 ‘It is difficult for me to study.’

c. <S(nom)>

enehak-ul kongpwu-ha-ki-ka elyep-ta.

 linguistics-ACC study-LV-NMS-NOM difficult-DC

 ‘It is difficult to study linguistics.’

It turns out that while (22a) and (22c) are included in our result, (22b),

<NP(nom), NP(nom)>, is not. The most frequent type in (20), <VP(nom)>,

8
 The numbers on the right side are the frequency value for each item in SKT.

216

is not given in (22), but perhaps it can be considered as a case of (22c),
9

though the distribution of <S(nom)> and <VP(nom)> in SKT should not be

ignored. <VP(nom), NP(dat)>, whose frequency value is 10, is not reflected

in (22). Perhaps it has something to do with the the difference on the status

of ‘NP(dat)’, that is, whether it should be treated as a valid argument or not.

Then the main and clear difference between (21) and (22) would be

(22b), which does not appear in (21). In fact, it appeared only once in SKT.

It is very interesting to note that the construction given in (22b) is the so-

called multiple nominative construction, one of the most hotly and widely

debated topics in Korean linguistics, as it is claimed to show one of the major

characteristics of the Korean language. Therefore, the significance and

implication of the difference regarding (22b) would need further investigation,

which we leave for future research.

3.3 The Type Hierarchy

After the valid set of ARG-STs is acquired, our system draws the type

hierarchy of verbal lexemes automatically. There are six depths in our type

hierarchy. The top node of the hierarchy is regular-v, which is divided into

two subtypes at the second depth; stative-v for adjectives and non-stative-v

for verbs. Types in the third depth are divided according to transitivity, and

types in the fourth depth are divided according to whether the ARG-ST of the

lexeme can contain oblique cases. If an oblique case can appear in the

ARG-ST, -obl- is attached to the type name; otherwise, -bas- is attached.

The fifth depth classifies types into subtypes in conformity with the category

of arguments; such as NP, VP, or S. Finally, the last depth is related to the

case of arguments, such as nom, acc, or dat. The whole type hierarchy that

our system built up is sketched out below.

9
 In SKT, the difference between an S and a VP is the presence or absence of the

nominative marked NP on the surface. So, the example in (22c), which would

treated as a case of <S(nom)> in the Yonsei Korean Dictionary, is to be considered as

<VP(nom)> in (21) as the nominalized clause enehak-ul kongpwu-ha-ki-ka ‘to study

linguistics’ lacks its internal subject on the surface.

217

(23)

a
-in

tr-b
a
s-n

a
-in

tr-b
a
s-n

-n

a
-in

tr-b
a
s-v

a
-in

tr-b
a
s-s

a
-in

tr-o
b
l-n

_
n
o
m
-n
_
lo
c

a
-in

tr-o
b
l-n

_
n
o
m
-n
_
cm

t
a
-in

tr-o
b
l-n

_
n
o
m
-n
_
co

m
p

a
-in

tr-o
b
l-n

_
n
o
m
-n
_
src

v-in
tr-b

a
s-n

v-in
tr-b

a
s-n

-n

v-in
tr-b

a
s-n

-v
v-in

tr-b
a
s-n

-vn

v-in
tr-o

b
l-n

_
n
o
m
-n
_
d
ir

v-in
tr-o

b
l-n

_
n
o
m
-n
_
lo
c

v-in
tr-o

b
l-n

_
n
o
m
-n
_
cm

t

v-in
tr-o

b
l-n

_
n
o
m
-n
_
eq

t

v-in
tr-o

b
l-n

_
n
o
m
-n
_
src

v-in
tr-o

b
l-n

_
n
o
m
-n
_
n
o
m
-n
_
d
ir

v-in
tr-o

b
l-n

_
n
o
m
-n
_
n
o
m
-n
_
lo
c

v-in
tr-o

b
l-n

_
n
o
m
-n
_
n
o
m
-n
_
src

v-tr-o
b
l-n

_
n
o
m
-n
_
a
cc-n

_
in
st

v-tr-o
b
l-n

_
n
o
m
-n
_
a
cc-n

_
lo
c

v-tr-o
b
l-n

_
n
o
m
-n
_
a
cc-n

_
src

v-tr-o
b
l-n

_
n
o
m
-n
_
a
cc-n

_
cm

t

v-tr-b
a
s-n

-n

v-tr-b
a
s-n

-v

v-tr-b
a
s-n

-vn

v-tr-b
a
s-n

-n
-n

v-tr-b
a
s-n

-n
-v

v-tr-b
a
s-n

-n
-vn

a
-in

tr-o
b
l-n

_
n
o
m
-n
_
n
o
m
-n
_
lo
c

a
-in

tr-o
b
l-n

_
n
o
m
-n
_
n
o
m
-n
_
cm

t

To begin with, our system generate only three types; regular-v, stative-v, and

non-stative-v. By checking all verbal lexemes which appear ten or more

times in SKT, the type hierarchy automatically branches out whenever a new

type comes out.

For example, noh ‘put’ <NP(nom), NP(acc), NP(loc)>, presented in

(4a), which belongs to v-tr-obl-n_nom-n_acc-n_loc generates four types

hierarchically, if there has not been corresponding types yet; v-tr, v-tr-obl, v-

tr-obl-n-n-n, and itself. We also designed our system to be a stringent or

shallow one, minimizing unnecessary branches in the hierarchy. For

example, the v-tr-obl-n-n-n type is deleted after the whole type hierarchy is

built up, because the type has no subtypes. That is, after a type hierarchy

has been built up once, our system gets rid of types without subtypes from

the tentative hierarchy, and minimizes the depth of hierarchy.

Let us now consider elyep- ‘difficult’ mentioned above. As shown

before, there are four ARG-STs which fall under elyep-; <VP(nom)>,

<NP(nom)>, <S(nom)>, and <VP(nom), NP(dat)>. Since elyep- is an

adjective, all four belong to a-intr type in the above hierarchy (23). Among

them, since the last one, <VP(nom), NP(dat)>, takes an oblique case (i.e.

datives) as its argument, it belongs to the a-intr-obl type. The others that do

not take any kind of oblique cases as their argument come under the a-intr-

bas type. Table in the below shows the matching between them. Note that

if there are no subtypes under a node, the node will be discarded in order to

make the hierarchy as shallow as possible. For example, although an ARG-

ST <VP(nom), NP(dat)> seems to belong to the a-intr-obl-v_nom-n_dat type,

its type is specified as a-intr-obl-v-n, because there are no sister type that

shares its parent type.

218

ARG-ST type frequency proportion

<VP(nom)> a-intr-bas-v 85 42.3%

<NP(nom)>, a-intr-bas-n 49 24.4%

<S(nom)>, a-intr-bas-s 11 5.5%

<VP(nom), NP(dat)>. a-intr- obl-v-n 10 5.0%

Table 2 : Types of elyep- ‘difficult’

All in all, the result of this study consists of two parts. One is the

whole type hierarchy of verbal lexemes in Korean. There are 50 types in the

resulting type hierarchy. The other is the set of lexical information of verbal

lexemes, which includes information about frequency. The result of our

analysis includes 915 verbal entries (91 adjectives and 824 verbs). Since an

adjective or a verb can belong to two or more types, the total number of

lexicons is 1,572. Each ARG-ST has its own frequency value. Since the

results of our study are written in a type definition language, it would be

possible to implement the result in an HPSG-based parser, such as the LKB

system.

4 Evaluation

As a way to check how well our result fits with other known language

resources, we compared our ARG-STs with three available resources

separately, the Yonsei Korean Dictionary (eval1), the Sejong Korean

Electronic Dictionary (eval2), and also a type hierarchy, built up manually,

proposed in Kim et al. (2006) (eval3). In order to evaluate the results of our

analysis, we make use of precision, recall, and F-measure (Manning and

Schütze 1999:268) as given below.
10

(24)

fptp

tp
precision

+
=

(25)

fntp

tp
recall

+
=

(26)

RP

F
1
)1(

1

1

αα −+
=

10
 According to Manning and Schütze (1999), precision is defined as ‘a measure of

the proportion of selected items that the system got right’, recall is defined as ‘the

proportion of the target items that the system selected’, and F-measure is one of ‘the

combined measures of precision and recall’. In the formula (26), P is short for

precision, R means recall. And as for α, ‘α = 0.5’ is normally selected.

219

The comparison was done as follows; After selecting at random one

hundred entries from our list, we observed the differences. If an ARG-ST of

our results is compatible with that of the Yonsei Korean Dictionary or the

Sejong Korean Electronic Dictionary, tp (true positives) will increase. If an

ARG-ST of our results does not appear in the dictionary, fn (false negatives)

will increase. In the reversed cases, fp (false positives) will increase. Let

us call this evaluation process eval1 and eval2, respectively. The following

table shows the comparison.

 eval1 eval2 eval3

precision 80.66% 79.01% 55.56%

recall 79.35% 71.50% 62.50%

Fα=0.5 80.00% 75.07% 58.82%
Table 3 : Evaluations

The values of eval1 and eval2 are fairly high, which are at the similar level

reported in Sarkar and Zeman (2000). On the other hand, the values of

eval3 are relatively low. We have yet to sort out where the major source of

the difference lies.

5 Conclusion

In this paper we have proposed a method of automatically building up a type

hierarchy for verbal lexemes based on parsed corpora. We introduced

algorithms to collect all the possible ARG-ST and its frequency for a given

verbal lexeme, to select appropriate ARG-STs from the candidate set, and

finally to build a comprehensive type hierarchy for Korean verbal lexemes.

The type hierarchy we have reached in this study, according to our random

sample comparison, appears to match reasonably well with the information

provided in two of the available resources, though a more thorough and in-

depth comparison would be necessary.

We have taken a very practical and surface-oriented approach in

selecting ARG-STs that form the basis of the type hierarchy, thus obviating

the difficult task of resolving the argument-adjunct distinction problem in

Korean. There is also certain flexibility in the selection process: for

example, the significance level we chose was at 25%, a very loose one, but if

we choose the significance level at a stricter level, say, 10%, or 5%, the result

would be a much more simple type hierarchy. On the other hand, if we

choose a yet looser one, the resulting type hierarchy would be a much more

fine-grained and complex one.

We believe the analysis given in this study brings up some specific

and interesting questions and issues for more theoretically oriented linguistics

as well as for computational linguistics. Discussion of these and related

issues, and their implications, would certainly need further investigation.

220

References

Chae, Hee-Rahk. 2000. Complements vs. Adjuncts (in Korean). Studies in

Modern Grammar 19:69-85.

Kim, Jong-Bok and Jaehyung Yang. 2004. A constraint-based approach to

Korean auxiliary constructions and its computational implementation.

Language Research 40(1): 195-226.

Kim, Jong-Bok et al. 2006. Building up Korean Verbal Hierarchy. Paper

presented at Conference of Korean Lexicology, Seoul.

Levin, Bath. 1993. English Verb Classes and Alternations: a Preliminary

Investigation. Chicago: University Of Chicago Press.

Manning, Christopher D.. 1993. Automatic Acquisition Of A Large

Subcategorization Dictionary From Corpora. Paper presented at The 31st

Annual Meeting of the Association for Computational Linguistics,

Columbus, Ohio.

Manning, Christopher D. and Hinrich Schütze (1999) Foundations of

Statistical %atural Language Processing. Cambridge: The MIT Press.

Sarkar, Anoop and Daniel Zeman. 2000. Automatic Extraction of

Subcategorization Frames for Czech. Paper presented at COLI%G-2000.

Sohn, Ho-Min. 1999. The Korean Language. Cambridge: Cambridge

University Press.

221

