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Abstract 
We describe an empirical method to explore and contrast 
the roles of default and principal part information in the 
differentiation of inflectional classes. We use an 
unsupervised machine learning method to classify 
Russian nouns into inflectional classes, first with full 
paradigm information, and then with particular types of 
information removed. When we remove default 
information, shared across classes, we expect there to be 
little effect on the classification. In contrast when we 
remove principal part information we expect there to be a 
more detrimental effect on classification performance. 
Our data set consists of paradigm listings of the 80 most 
frequent Russian nouns, generated from a formal theory 
which allows us to distinguish default and principal part 
information. Our results show that removal of forms 
classified as principal parts has a more detrimental effect 
on the classification than removal of default information. 
However, we also find that there are differences within 
the defaults and principal parts, and we suggest that these 
may in part be attributable to stress patterns.  

1. Introduction 
The particular challenge which languages with inflectional classes pose is 
that these classes create an additional layer of complexity which is more or 
less irrelevant from the perspective of syntax. Linguists can provide 
principled analyses of such inflectional classes, and typically have a good 
idea of what the main ones in a language are. However, our understanding of 
inflectional classes could be improved by exploring how well linguistically 
informed analyses correspond to those which are obtained using 
unsupervised learning techniques, with few built-in assumptions. This would 
provide some external validation for such analyses. 

We need first to be clear about the way in which inflectional classes are 
complex. They represent a particular kind of morphological complexity 
which it is important to distinguish from other phenomena which may be 
associated with these terms. Consider the Turkish verb in (1), discussed by 
Baerman et al. (2009). 

 
(1) alıyorduysam 

al-ıyor-du-isa-m 
take-CONTINUOUS-PST-CONDITIONAL-1SG 
‘if I was taking’ 
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Here a large number of inflectional suffixes are attached to the root. But this 
large number is a direct reflection of the distinctions relevant for syntax. So 
this is no more complex than the underlying requirements of syntax and is 
therefore quite straightforward. In Figure 1, in contrast, there is complexity in 
Russian nouns arising solely from membership of inflectional classes with no 
corresponding syntactic requirement.1  
 
   ‘deed’ 

Class IV 
 ‘factory’ 

Class I 
 ‘country’ 

Class II 
 ‘bone’ 

Class III 
 

 NOM SG  del-o  zavod  stran-a  kost´             
 ACC SG  del-o  zavod  stran-u  kost´             
 GEN SG  del-a  zavod-a  stran-i  kost´-i             
 DAT SG  del-u  zavod-u  stran-e  kost´-i             
 PREP SG  del-e  zavod-e  stran-e  kost´-i             
 INS SG  del-om  zavod-om  stran-oj  kost´-ju             
 NOM PL  del-a  zavod-i  stran-i  kost´-i             
 ACC PL  del-a  zavod-i  stran-i  kost´-i             
 GEN PL  del  zavod-ov  stran  kost´-ej             
 DAT PL  del-am  zavod-am  stran-am  kost´-am             
 PREP PL  del-ax  zavod-ax  stran-ax  kost´-ax             
 INS PL  del-am´i  zavod-am´i  stran-am´i  kost´-am´i             

 
Figure 1: Russian inflectional classes (phonological transcription)2 

 
This complexity cannot be explained by the role of gender assignment. The 
words strana ‘country’ and kost’ ‘bone’, for example, both require feminine 
gender on agreeing items, but inflect differently. On the other hand, the 
words delo ‘deed’ and zavod ‘factory’ require different gender agreement 
(neuter and masculine respectively), but share many inflections in the 
singular, while all the classes share many inflections in the plural. Hence, the 
relationship between the noun inflectional classes (IV, I, II and III) and 
gender is not a direct one. Gender is relevant for syntax, as it is an agreement 
category. Inflectional class, on the other hand, is not relevant for syntax, as 

                                                
1 We have placed IV to the left of I in Figure 1, because they can be treated as belonging to a 
superclass (see Corbett and Fraser, 1993). 
2 The phonolological transcription assumes that /i/ has two allophonic variants. It is retracted 
to the allophone [ɨ] after non-palatalized consonants. The nominative plural form /zakoni/, for 
example, will be realized with [ɨ], but /kost'i/ retains [i] since [t'] is soft. An automatic rule of 
palatalization applies before the vowel /e/. The marker ´ indicates that a consonant is 
palatalized. 
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the distinction between class II and III for example has no ramifications in 
the rules of agreement. This is pure morphological complexity whereby one 
and the same grammatical distinction can be expressed in a number of 
different ways. This is additional structure which is not relevant from the 
point of view syntax. In other words, it is complexity associated with 
autonomous morphology in the sense of Aronoff (1994).  

1.1 Defaults and principal parts 
The question naturally arises therefore as to what makes morphological 
complexity of this type learnable. Two theoretical notions can be mustered 
when describing the properties of inflectional classes. One is the traditional 
notion of principal part. This is the form, or set of forms, which make it 
possible to infer the other forms of a lexeme. The other notion is default. 
Finkel and Stump (2010) define the canonical principal part as both highly 
predictive and highly unpredictable. That is, given a canonical principal part 
we can predict all the other forms in a lexeme’s paradigm. Conversely, the 
other forms in the paradigm would not predict a canonical principal part. 
Using this terminology we can see that a default is the mirror image of this. 
A canonical morphological default is a form which does not serve to predict 
the other forms in a lexeme’s paradigm, but is highly predictable (in the 
limiting case because all lexemes have it). 

As is clear from Figure 1 some items should be good as principal parts for 
identifying their inflectional class, whereas others are defaults. There are 
good theoretical grounds for assuming that, at some level, Russian has four 
nouns inflectional classes. If we analyze Russian declensions as a default 
inheritance hierarchy, we can treat certain classes, such as I and IV, as 
belonging to a superclass (labelled N_O by Corbett and Fraser 1993 in their 
Network Morphology analysis).  

 
Figure 2: defining defaults and principal parts in terms of inheritance 
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In Figure 2 we consider 6 of the 12 paradigm main paradigm cells for 
Russian in terms of the notion principal part and default. We give the 
locations where something has to be said about the realization of these 6 
cells. (We do not give any information about the 6 other paradigm cells in 
Figure 2.) The paradigm cells plural dative, plural instrumental and plural 
prepositional (represented by the paths <mor pl dat>, <mor pl inst>, 
<mor pl prep>) are the most default-like, because they are not overridden 
by any of the lower nodes.3 The rules which define them are therefore located 
at the highest node only. Knowing the plural dative, prepositional or 
instrumental is of no help in inferring the other forms in the paradigm of a 
given noun. On the other hand, they are predictable. We can have the highest 
degree of certainty about what a noun’s plural dative, prepositional and 
instrumental will look like. Examination of Figure 1 shows that we can be 
fairly certain about the singular prepositional inflection of a noun. It is only 
class III which has a different realization for this, and this is reflected in the 
fact that something (<mor sg prep>) needs to be stated at N_III about the 
singular prepositional.  

The singular instrumental (<mor sg inst>), on the other hand, has to be 
stated at three locations (N_O, N_II and N_III). Knowing the singular 
instrumental is more helpful in facilitating prediction of other forms, 
although it will not distinguish between class I and class IV. The singular 
prepositional is therefore more default-like than the singular instrumental, 
which we can consider more principal-part-like. Given the analytical 
decisions taken to place defaults at different points in the hierarchy (e.g. 
Corbett and Fraser 1993; Brown et al. 1996; Baerman, Brown and Corbett 
2005; Brown and Hippisley forthcoming) we can test to see whether there is 
a reflex in the learning of inflectional classes by systematic removal of 
information. We can compare the default-like with the principal-part-like 
information (the latter being located lower in the hierarchy at the declension 
class nodes, as with the singular instrumental).  

1.2 Classification, defaults and principal parts 
In this paper we explore how well an unsupervised learning method classifies 
nouns into inflectional classes, and consider the degree to which these classes 
match with ones which have been identified for Russian. The ability to 
classify the items must rely on information from the paradigm cells, but only 
with systematic testing can we determine which information plays a 
significant role. Given that the classification must be based on paradigm cell 

                                                
3 Figure 2 is actually a simplification in that the plural dative, instrumental and prepositional 
are defaults at the MOR_NOMINAL level, because the rules associated with them can 
generalize over the other nominal classes (such as adjectives and pronouns). This is discussed 
in Brown and Hippisley (forthcoming). 
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information, it is a task which is related to what Ackerman et al. (2009) call 
the Paradigm Cell Filling Problem (PCFP):  
 

“What licenses reliable inferences about the inflected (and 
derived) surface forms of a lexical item?” 
(Ackerman et al. 2009: 54) 

 
Ackerman et al. (2009) claim that the tractability of this problem is 
guaranteed by the fact that inflectional classes are constrained to reduce 
entropy, so that not all instances of particular inflectional exponents are 
equally probable. Finkel and Stump (2007) appeal to the traditional notion of 
principal parts so as to reduce the entropy down to zero. Paradigm cells such 
as the instrumental singular appear to be very informative as to class. The 
underlying analysis with which we have created the dataset for the 
experiments has itself a gradient notion of default. We have other defaults 
which have an intermediate status, as with the singular prepositional. For 
example, knowing the nominative plural narrows down the set of possible 
classes (I-III). And a default may sometimes even help distinguish between 
classes. This is true for the nominative plural in that class I has the default 
form, while class IV does not. Our aim, then, is to determine what role these 
different notions play in the unsupervised learning of inflectional classes. The 
work we present here is an initial step towards understanding this. 

The ideal unsupervised method should be quite robust and independent of 
format, with very few theoretical assumptions built in. Goldsmith and 
O’Brien (2006) use a feed-forward backpropagation neural network with one 
hidden layer to simulate the learning of Spanish conjugation classes. The 
hidden layer allows for a better classification into these classes.  They also 
simulated the acquisition of German noun declensions using this method. The 
method we use is relatively independent of data format and does not make 
use of a hidden layer. There are, of course, some issues with it, which we 
discuss in section 2.1. 

We apply our chosen unsupervised learning method to full paradigms 
generated from an underlying default-based theory of Russian. This allows us 
to test how well linguists’ intuitions about inflectional classes fare when 
tested with few built-in assumptions. We use the full paradigms of the 80 
most frequent noun lexemes from Zasorina’s (1977) frequency dictionary. 
This allows us to consider how readily inflectional class membership can be 
inferred from high frequency data, where that are lots of items which appear 
to be fuzzy or partial members of a class. We can then see how well the 
classification performs by removing default and principal parts information.  

An additional complication to our task is that stress patterns play a role in 
Russian noun inflection, and these cross-classify the noun declension. The 
task of inferring an inflectional class and the appropriate stress pattern results 
is a greater challenge. Combined with the fact that there is a rich tradition of 
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research on Russian to draw from, this additional complexity makes the 
language an important testing ground for methods for inferring and validating 
inflectional classes. Particularly among high frequency nouns, there are items 
which may have the right affixes for a particular inflectional class but stress 
patterns which may associate them with nouns which belong to another 
inflectional class, or certain cells of a nouns’ paradigms have affixes which 
are not typical for the class with which they are best associated.  We are 
currently working on separating out the role of the stress patterns from the 
declensions, and will not discuss this in great detail in this paper.  

2. Unsupervised learning of inflectional 
classes 

Our empirical investigation of these notions from morphological theory 
employs an unsupervised machine learning technique to derive inflectional 
classes from sets of noun paradigm tables. We use compression-based 
similarity to cluster nouns into classes, where nouns in the same class are 
considered to have more similar paradigm tables than nouns in different 
classes. The core of our method is CompLearn4, a machine-learning system 
which relates arbitrary data objects according to their ‘similarity’ (section 
2.1). However, CompLearn does not implement the actual clustering of 
similar data into classes, so we need to introduce some simple heuristics to 
achieve this additional step (section 2.2). These two components provide the 
basic framework for a method for learning inflectional classes. We discuss 
methods for evaluating the results of the learning task (section 2.3), and 
finally summarise the complete experimental method (section 2.4). 

2.1 Compression-based machine learning 
The machine-learning paradigm that we use is the compression-based 
approach described in Cilibrasi and Vitányi (2005) and Cilibrasi (2007), as 
implemented in the CompLearn tools. This approach has two main 
components: (a) the use of compression (in the sense of standard 
compression tools such as zip, bzip etc.) as the basis of a measure for 
comparing data objects and (b) a heuristic clustering method, which relates 
objects according to their similarity using this measure. Together, these 
components provide a general purpose unsupervised method for clustering 
arbitrary digital data objects. Cilibrasi (2007) provides examples of its 
application to fields as diverse as genetics in mammals and viruses, music, 
literature, and genealogical relatedness of languages.5  

                                                
4  http://www.complearn.org 
5 Other work using compression-based techniques in relation to the study of language includes 
Juola (1989) and Kettunen et al. (2006).  This research focused on compressing corpus data. 
While Juola's work addresses morphology, it is concerned with measuring complexity in terms 
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The basic operation of the CompLearn method is as follows.  The input to 
the system is a set of data objects, each of which is simply a computer file 
containing some (unconstrained) digital data. Given two such data objects, 
CompLearn determines how similar they are by calculating the normalized 
compression distance (NCD) between them. This exploits the notion of a 
compression function which attempts to make a data object smaller by 
detecting repeated patterns in the data and representing them more compactly 
(as commonly used by computer operating systems to reduce the size of large 
files). NCD measures the difference between data objects by comparing how 
well they compress jointly and separately – if there is a benefit to 
compressing them jointly, this must be because the compression algorithm 
has found commonalities between them, and we interpret this as meaning 
they are similar. The more benefit that is gained, the more similar the two 
data objects are. 

Given two data objects x and y and a compression function c, NCD is 
defined as: 
 

(2) 

! 

NCD(x,y) =
C(xy) "min{C(x),C(y)}

max{C(x),C(y)}
 

 
Normalized compression distance (Cilibrasi and Vitányi, 2005: 7; Cilibrasi, 2007) 
 

Here, C(x) is the size of the compressed version of x using c, and C(xy) is the 
size of the compressed version of x and y concatenated. In essence, NCD 
measures the maximal additional size needed to compress both objects 
together compared with compressing one. The denominator normalizes the 
result to approximate to [0,1], where 0 means the objects are identical 
(compressing both together has the same cost as compressing one) and 1 
means the objects are completely dissimilar (compressing both together has 
the same cost as compressing each one individually). The effectiveness of 
NCD depends on the power of the compression function c, and in particular 
its ability to exploit ‘similarities’ in the objects which are not explicitly 
visible. But ‘off-the-shelf’ compressors such as bzip26 are very effective at 
this, even with completely arbitrary data objects. 

Given a set of n data objects, CompLearn first computes a distance matrix, 
recording the NCD between each pair of objects. From this, CompLearn 
creates an unordered tree representing clustering relationships implicit in the 
distance matrix. An example of an unordered tree is shown in Figure 37 
below. In this tree, each data object is represented by a leaf node, and the tree 

                                                                                                               
of the overall informativeness of a text. We are, however, not aware of any previous 
application of a compression-based approach to the clustering of  inflectional classes. 
6 http://www.bzip.org 
7 The node styling in figure 2 is a manual addition, as discussed in section 4.2 below. 
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structure is designed to correlate the distance between data objects in the tree 
(that is, the number of tree edges between them) with their NCD distance. 
Thus data objects close together in the tree are similar, while those far apart 
are dissimilar8. 

Constructing such a tree from the distance matrix is a challenging 
computational task. In CompLearn, the structure of the tree is topologically 
constrained to comprise n leaf nodes (corresponding to the data objects) and 
n-2 internal nodes, each of order 3. Finding a tree with this structure which is 
the best fit for the distance matrix is an NP-Hard problem (Cilibrasi 2007, 
p49), so a best approximation to the optimal tree is constructed using a hill-
climbing simulated annealing heuristic approach. Initially an arbitrary tree 
(meeting the topological constraints) is constructed with the n data objects as 
leaves. Then constraint-preserving modifications to the tree’s internal 
structure are applied randomly, in accordance with a probability distribution 
which favours frequent small-scale changes to tree structure, with occasional 
larger-scale reorganisations to avoid getting stuck in local maxima. Each new 
tree is scored according to how well it pairs up similar data objects and 
separates dissimilar data objects and on each iteration the best-scoring tree 
generated so far is retained. The process stops when either the best possible 
score is attained, or there is no further improvement after a large number 
(circa 100000) of attempted modifications. 

Cilibrasi shows that this procedure produces trees which are good 
approximations of the relations expressed in the distance matrix. However, as 
the method has a random probabilistic element, multiple runs on the same 
data may deliver different results. So it is important to execute multiple runs 
to check that any solution found is stable (and even then, it may not be the 
only stable solution). 

2.2 Extracting classes from unordered trees 
The unordered tree structure returned by CompLearn represents relatedness 
in the data set, but does not directly generate ‘classes’. Indeed every internal 
node in the tree in figure 3 can be interpreted as a valid partition of the leaves 
into three clusters of ‘related’ leaf nodes (the clusters being the leaves 
reachable from each of the three edges leaving the node), and similarly every 
edge divides the set of leaves into two clusters. The tree structure itself does 
not tell us which clusters to choose, it just constrains the set of possible (or 
sensible) clusters – clusters that respect the relatedness structure of the tree 
and do not, for example, pick out odd leaves from disparate segments in the 
tree. 

                                                
8 The tree-drawing algorithm used to draw this tree is ‘neato’ in the Graphviz package 
(http://www.graphviz.org). This applies its own heuristics to lay out the tree so that nodes 
close together in the tree are generally also grouped together. This means that it is reasonably 
safe to interpret the visual clustering of the tree as correlating broadly to tree distance which in 
turn correlates broadly to distance in the NCD matrix. 

242242



 

 

In order to derive sensible classes from the tree we start off with a simple 
assumption: that no single class contains more than half the leaves. This 
assumption only works if we have some idea of what classes we expect to 
find, and can control the input data set sufficiently to achieve it – in the 
current context we can do this fairly easily. As soon as we make this 
assumption, we can impose order on the tree, by identifying an internal node 
that splits the tree into clusters, none of which contains more than half the 
leaves, and nominating it as the root of an ordered tree (there will be at most 
two such nodes in the tree, and we can pick either one). Once the tree is 
ordered in this way, its structure provides a natural hierarchy of clusters that 
respect the relatedness structure of the original unordered tree.  

The task of finding a set of classes in such a tree becomes ‘find a set of 
internal nodes in the tree which form a disjoint cover of the leaves (that is, 
which together dominate all the leaves with no overlaps)’. To do this, we 
need to know (a) how many classes we think there are, (b) how to identify 
candidate class sets in the tree of that size and (c) how to decide between 
competing possible class sets. Once again we have to appeal to our intuitions 
about the problem to decide how many classes to look for, but we can 
explore solutions for nearby cases as well. We identify candidate class sets 
by moving down the tree from the root, successively breaking classes into 
smaller parts represented by their child nodes until we have at least the 
requested number of classes.9 

Our approach to choosing between class sets makes use of a function 
which generates a score for each class in the set. We choose the set for which 
the variance of these scores is smallest, that is, the set in which the classes are 
closest to having the same score. We have experimented with three such class 
measurement functions: 

• count: this function simply counts the number of leaves in each 
class. Hence the best class set is the one in which the classes are 
closest to being the same size as each other.  

• max: this function returns the maximum NCD score between 
leaves in the class. The best class set is one which distributes 
outliers between the classes, without much regard for the 
distribution of other leaves between the classes. 

• avg: this function returns the average NCD score between leaves 
in the class. The best class set for is one where all the classes 
capture about the same amount of difference among their leaves 
(visually, they are about the same size, but unlike count, they may 
be different densities).  

                                                
9 The ordered tree is binary except for its root node, which is ternary. So in most cases a class 
is split into two parts. As a special case we allow the root node to represent two classes, one 
containing two subtrees the other one (in all possible ways), to avoid overcommitting to the 
initial three-way distribution of classes. 
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2.3 Evaluating inflectional class results 
In order to assess the success of our approach, we need a way of evaluating 
the inflectional classes returned by the machine learning method. We achieve 
this by comparing the returned classes with a predefined ‘right answer’ based 
on our theoretical intuitions. We have experimented with three ways of 
representing the ‘right answer’: 

• gold standard: we simply stipulate what the correct class for each 
data object is, based on our theoretical intuitions. This is a 
reasonable objective measure of how well the classification 
algorithm meets our theoretical expectations. 

• classified gold standard: we create a data set in which each data 
object is represented just by its gold standard answer (so for 
example, the noun strana is represented simply by the string 
‘classII’) and run the classification algorithm over this set. The 
result aims to represent the best possible classification that can be 
achieved using the classification algorithm (without any noise in 
the input), so that comparison with this set is a good subjective 
measure of how well the algorithm is coping with the additional  
noise in ‘real’ data inputs. However, the data objects are very 
small, so the compression algorithm may not distinguish between 
them very well. 

• classified exemplars: we create a data set as in the previous case, 
but this time each data object is represented by an exemplar data 
object of the right class (the same exemplar for all objects in one 
class). As above, classifying this set aims to represent the best 
possible classification, but by using a richer input representation 
the compression function may be more effective at calculating 
NCD scores. 

Each of these alternative ‘right answers’ results in a classification for the 
input data objects. Each experimental run results in another classification for 
the data objects. In order to evaluate an experiment, we create a mapping 
between classes in the experimental result and classes in the right answer, 
and then count how many data objects respect this mapping – that is, how 
many of them occur in the right answer class that the mapping predicts for 
them. There are many ways to construct such a mapping between the 
classifications, and we choose a mapping which maximises the agreement 
score. 

2.5 Summary of the experimental method 
In summary, the basic experimental method we use is as follows: 

1. Prepare a data set as a set of files, one for each data object; 
2. Create the NCD distance matrix from the data set; 
3. Create an unordered tree using the probabilistic simulated 

annealing method (repeating several times to assess stability); 
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4. Order the tree by identifying a root node, and determine the best 
classification using one of the three scoring functions (count, max 
or avg); 

5. Evaluate the classification against one of the ‘right answer’ 
classifications (gold standard, classified gold standard, or classified 
exemplars).  

3. Experimental data 
3.1 Data format 
In order to apply this methodology to the learning of inflectional classes, we 
use noun paradigm table listings as the data objects. An example of such a 
listing, for the noun strana (country), is given in (1). 10 

 
(1) mor sg nom = stran ^ a @". 

mor sg acc = stran ^ u @". 
mor sg gen = stran ^ i @". 
mor sg dat = stran ^ e @". 
mor sg inst = stran ^ o @" ^ j ( u ). 
mor sg prep = stran ^ e @". 
mor sg prep loc = stran ^ e @". 
mor pl nom = stran ^ i. 
mor pl acc = stran ^ i. 
mor pl gen = stran. 
mor pl dat = stran ^ a ^ m. 
mor pl inst = stran ^ a ^ m'i. 
mor pl prep = stran ^ a ^ x. 

 
These listings include morphological feature information and the forms 
themselves in phonological transcription. The caret (^) marks concatenation 
and the symbol combination @" marks stress. 

Such a listing is represented in a plain text file, and the algorithm 
described above is run over a set of such files. Thus the compression function 
is applied to such listings individually, and concatenated together in pairs, in 
order to compute NCD scores. We briefly note a number of features of this 
representation which may have some bearing on the performance of the 
algorithm: 

1. The list of forms is always presented in the same order in each file. 
We have not yet explored whether mixing up the order has any 
bearing on the results. 

                                                
10 The prep attribute is used in this dataset to represent the prepositional case (i.e. PREP SG 
and PREP PL in figure 1). This is also called the locative in many descriptions. The combination 
mor sg prep loc is used to represent the ‘second locative’ . The noun in this case does 
not really have a separate second locative as the form is the same as for the standard 
prepositional (or locative). This is discussed in detail by (Brown 2007). 
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2. We assume that systematic variation of the morphological terms 
(‘sg’, ‘pl’, ‘nom’ etc.) will not have a significant impact on the 
results, as the compression algorithm detects the patterns rather 
than the content. 

3. The inclusion of some morphological segmentation information 
(ie the use of the caret for concatenation) means that the data 
incorporates some assumptions about morphological structure. 
However this structure in itself does not determine morphological 
classes, which is the main focus of our interest. Nevertheless it 
would be interesting in future to compare our results with using 
completely unsegmented surface forms. 

4. The inclusion of individual noun stems probably does have a 
significant bearing on the results, as without them many of the 
listings would be almost identical. However we think that 
removing stem information would make the learning task too 
unrealistic to be of interest. 

5. The inclusion of stress markers may well have an impact on 
performance, as stress patterns cut across morphological classes. 
Stress is not the main focus of the present paper, but we make 
some observations about it in section 4. 

3.2 Data sets 
The data set for our experiments are full paradigm listings (as described 
above) of the most frequent 80 nouns from Zasorina’s (1977) frequency 
dictionary of Russian. They were generated from a Network Morphology 
theory representing the first 1500 most frequent noun lexemes implemented 
in the default-inheritance-based lexical representation language DATR 
(Evans and Gazdar 1996). Within these 80 nouns, we can distinguish five 
classes – the four theoretically motivated classes introduced in section 1, plus 
a small class of irregular nouns classed as ‘other’. Table 1 lists the nouns 
included in each class: 
 

Class 1 Class II Class III Class IV Other 
čelovek (person) armija (army) cel' (goal) delo (affair) leta (summer/ 

year) 
den' (day) bor'ba (struggle) čast' (part) dviženie 

(movement) 
ljudi (people) 

dom (house) doroga (way) dejatel'nost' 
(activity) 

gosudarstvo 
(state) 

 

drug (friend) forma (form) dver' (door) lico (face)  
glaz (eye) golova (head) mat' (mother) mesto (place)  
god (year) kniga (book) molodëž' 

(young people) 
obščestvo 
(society) 

 

gorod (town) komnata (room) mysl' (thought) okno (window)  
konec (end) mašina (car) noč' (night) otnošenie 

(relation) 
 

mir (world) nauka (science) oblast' (area) pis'mo (letter)  
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narod (folk) noga (leg) pomošč' (help) proizvodstvo 
(production) 

 

otec (father) partija (party) poverxnost' 
(surface) 

rastenie (plant)  

raz (occasion) pravda (truth) put' (way) razvitie 
(development) 

 

stol (table) rabota (work) reč' (speech) slovo (word)  
svet (light) ruka (hand) skorost' 

(speed) 
solnce (sun)  

tovarišč 
(comrade) 

sila (force) smert' (death) steklo (glass)  

trud (labour) storona (side) step' (steppe) uslovie 
(condition) 

 

vopros (question) strana (country) svjaz' 
(connection) 

veščestvo 
(substance) 

 

zavod (factory) voda (water) vešč' (thing) xozjajstvo 
(economy) 

 

 vojna (war) vlast' (power) znakomstvo 
(acquaintance) 

 

 zemlja (country) vozmožnost' 
(possibility) 

  

  zhizn (life)   
Size = 18 Size = 20 Size = 21 Size = 19 Size = 2 

 
Table 1: Data set (with English glosses) arranged in theoretically motivated (‘gold 

standard’) classes.11 
 
As discussed in section1, our theoretical model gives us a clear idea of which 
lines in the paradigm listings correspond to default information and which 
correspond to principal parts. We remove each type of data independently, so 
in our experiments, we used three variants of these data sets: 

1. Full paradigms, to establish the baseline performance of the 
method with ‘complete’ knowledge. 

2. Paradigms with default information removed. 
3. Paradigms with principal part forms removed. 

4. Experimental results 
4.1 Validating ‘right answer’ sets 
 
Our first experiment compared the three alternative versions of the ‘right 
answer’ classification, by creating ‘classified gold standard’ and ‘classified 
exemplar’ sets as described above, and classifying them into 5 classes, using 
each of the three class measurement functions. The evaluating scores for the 

                                                
11 The lexemes are given here in transliteration. The actual fragment generates paradigm 
listings in a lower ASCII phonological transcription.  
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resulting classifications against the hand-crafted ‘gold standard’ classification 
are shown in table 2. 
 

Class measurement function 
 
 

Count Max Avg 
Classified gold 

standard 77 60 77 

Classified 
exemplar 77 80 80 

 
Table 2: Evaluation scores (out of 80) for classification of ‘right answer’ data sets 

against gold standard (number of classes = 5) 
 
These results suggest that the basic classification method performs 
reasonably well when given ‘perfect’ data, but that there is a clear benefit to 
giving it the richer data inputs provided by the exemplar cases. The scores for 
the ‘count’ function are interesting, because the algorithm would be trying to 
find a solution with close to 16 nouns in each class, for which we would 
expect a much lower score (as at least 14 of the nouns classified as ‘other’ 
would be wrong). The fact that the evaluation scores are high suggests that 
the tree is modeling the relational structure of the data well, and only permits 
solutions which are close to the correct balance. The relatively low classified 
gold standard/max score may be indicative of the fact that the data is too 
simple, so that distances between data objects are all similar and so the ‘max’ 
classification is fairly arbitrary. 

There results encourage us to focus on the exemplar version of the ‘right 
answer’ data, and the ‘max’ and ‘avg’ measurement functions, in the 
remaining experiments. 

4.2 Validating full paradigms 
In our second experiment we classified the full paradigm data sets and 
evaluated the results against the true gold standard and the classified 
exemplar set. The unordered tree resulting from the classification process is 
shown in figure 3, and the results of the evaluations in table 3. 

These results show a consistent level of classification success of about 
55/80 (69%) for the real data. It is interesting that the results are the same for 
all three measurement functions. This may suggest that the constraints 
captured in the tree structure itself are more significant than different 
approaches to evaluating classification sets. The leaves in figure 3 are styled 
to illustrate how the gold standard right answers distribute across the 
clustering structure of the tree. It is evident that the class II nouns cluster very 
well, class III fairly well, with a small group of outliers, while classes I and 
IV are fairly confused (which is perhaps consistent with the Network 
Morphology account of the close relationship between these classes). 
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Figure 3: Classification of the full paradigm set – colours/shapes of the leaf nodes 
correspond to the ‘right answer’ (gold standard). The tree score (S(T)) is an 

indication that this tree is considered a good model of the underyling distance matrix. 
 

Class measurement function 
 
 

Count Max Avg 
Gold 

standard 55 55 55 

Classified 
exemplar 56 55 55 

 
Table 3: Evaluation scores (out of 80) for classification of full paradigm data sets 

against two ‘right answer’ representations (number of classes = 5) 
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4.3 Removing defaults 
In our third experiment, we removed single lines associated with default 
value specifications systematically from all the paradigm listings, reclassified 
the data and evaluated the results against the gold standard.12 The results are 
shown in table 4. 

 

Class measurement function 
 

Form 
removed 

Count Max Avg 
(none) 55 55 55 
PREP PL 54 55 55 
DAT PL 54 55 52 
ACC PL 54 55 50 
INS PL 54 55 50 

PREP SG 54 55 50 
NOM PL 37 35 39 

 

Table 4: Evaluation scores (out of 80) for classification of paradigm data sets with 
individual default values removed evaluated against the gold standard (number of 

classes = 5) 
 
This table shows that removal of information provided by default in general 
makes very little difference to the performance of the classifier. The one 
exception is the nominative plural case, discussed further in section 5 below. 

4.4 Removing principal parts 
In our last experiment, we remove single lines associated with principal parts, 
and so considered essential identifiers of the inflectional class. Results of the 
evaluation against the gold standard are given in table 5. 

 

                                                
12 Results against the classified exemplar set were the same for the ‘max’ and ‘avg’ measures. 
For ‘count’ they varied slightly, but not systematically. 
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Class measurement function 
 

Form 
removed 

Count Max Avg 
(none) 55 55 55 
GEN SG 54 55 61 
NOM SG 53 42 50 
GEN PL 54 46 46 
ACC SG 42 43 43 
DAT SG 42 38 39 
INS SG 41 38 38 

 

Table 5: Evaluation scores (out of 80) for classification of paradigm data sets with 
individual principal part values removed evaluated against the gold standard (number 

of classes = 5) 
 
Here we see much greater variation in the impact of the removal of the data 
on the classification performance, consistent with the claim that these values 
are more significant to correct classification. We also see some, but not all, 
case show a significant variation in performance between measurement 
functions, which may be an indication of a difference in outlier distribution. 

5. Discussion 
5.1 Analysis 
The results in section 4 indicate that there is little effect on classification 
when more default-like cells are removed. In contrast, a greater effect 
appears to be observable when principal-parts-like cells are removed. For 
example, removal of the oblique plural forms (dative plural, instrumental 
plural and prepositional plural) has a minimal effect on the correct 
classification in comparison with the base case, which reflects the fact that 
these are defaults for all nouns. In contrast the instrumental singular is clearly 
a good class identifier, as removing it from the paradigm tables has the most 
significant effect on classification performance. 

There are, however, two instances where the effect is not as expected. 
When the genitive singular is removed a classification score of 61 is achieved 
relative to the gold standard using the ‘avg’ measurement function. This 
compares with 55 for the base set, indicating that classification seems to be 
improved when the genitive singular is absent. More subtly, this effect is not 
observable when the ‘max’ function is used. This suggests that the genitive 
singular may contribute to greater variation from average similarity within 
classes, possibly attributable to the fact that there are essentially two 
allomorphs shared across the four classes (see Figure 1). Interestingly, if 
there were no superclass N_O, this particular paradigm cell would be a 
violation of Carstairs-McCarthy’s (1994) No Blur principle, which 
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essentially requires that a realization is either a default or a class identifier. 
The second case is the removal of the nominative plural, which has a greater 
effect than we might expect for a default-like cell. We conjecture that this 
could be connected with the fact that the inclusion of stress patterns in the 
dataset give it a greater role in identifying classes than just the affixal 
morphology would indicate.  

5.2 Conclusions 
We have presented data from an empirical investigation of defaults and 
principal parts where we determine the role they play in grouping high 
frequency nouns by removing the different elements individually and 
systematically. The experiments so far indicate that there is potentially an 
observable effect. Removal of default-like information typically has less of 
an effect than removal of principal parts information.  

We have used a naturally occurring data set (the 80 most frequent noun 
lexemes) to avoid idealizing the task too much. These nouns include a range 
of complications and irregularities not shown in figure 1, but nevertheless we 
are able to show some interesting effects. In addition, our data includes stress 
information which complicates the classification task, because stress patterns 
cross-classify the nouns in ways which are not straightforwardly predictable 
from inflectional class and cannot be accounted for purely in phonological 
terms (see Brown et al. 1996). In ongoing work we are checking the degree 
to which our current results for principal parts and defaults are dependent on 
data format and exploring the impact of the stress information on the 
classification task. 

5.3 Future work 
Our experiments indicate that this approach has significant potential for 
investigating the role of morphological complexity of the type we have 
defined earlier. There are a number of core areas which our future work will 
concentrate on. Further investigation needs to be carried out on the 
methodology in terms of its stability and evaluation of the clustering. We will 
also compare our results with the static principal parts analyses which can be 
created with the online tool referred to in Finkel and Stump (2007). In 
particular, we can compare the Finkel and Stump scores with the results 
obtained for our clusterings when the principal parts information is removed. 
We will also investigate the role of stress in the Russian system and carry out 
a controlled comparison of the stress patterns and their interaction with 
inflectional classes. As we can generate the paradigm sets from the 
underlying theory we can also alter that to eliminate segmentation 
information and determine its role in classifying inflectional classes. 
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