
Converting CCGs into typed feature
structure grammars

Hans-Ulrich Krieger
DFKI, Saarbrücken

Bernd Kiefer
DFKI, Saarbrücken

Proceedings of the 18th International Conference on
Head-Driven Phrase Structure Grammar

University of Washington

Stefan Müller (Editor)

2011

Stanford, CA: CSLI Publications

pages 109–125

Krieger, Hans-Ulrich & Bernd Kiefer. 2011. Converting CCGs into typed feature
structure grammars. In Stefan Müller (ed.), Proceedings of the 18th International
Conference on Head-Driven Phrase Structure Grammar, University of Washington,
109–125. Stanford, CA: CSLI Publications. DOI: 10.21248/hpsg.2011.7.

https://orcid.org/0000-0003-2323-091X
http://doi.org/10.21248/hpsg.2011.7
http://creativecommons.org/licenses/by/4.0/

1 Introduction

In this paper, we report on a transformation scheme that turns a Categorial Gram-
mar (CG), more specifically, a Combinatory Categorial Grammar (CCG; Baldridge
(2002)) into a derivation- and meaning-preserving typed feature structure (TFS)
grammar. We describe the main idea which can be traced back at least to work
by Karttunen (1986), Uszkoreit (1986), Bouma (1988), and Calder et al. (1988).
We then show how a typed representation of complex categories can be extended
by other constraints, such as modes, and indicate how the Lambda semantics of
combinators is mapped into a TFS representation, using unification to perform
α-conversion and β-reduction (Barendregt, 1984). We also present first findings
concerning runtime measurements, showing that the PET system, originally de-
veloped for the HPSG grammar framework, outperforms the OpenCCG parser by
a factor of 8–10 in the time domain and a factor of 4–5 in the space domain.

2 Motivation

The Talking Robots (talkingrobots.dfki.de) group here at the LT Lab of DFKI uses
categorial grammars in several large EU projects in order to communicate with
robots in spoken language. The grammars for English and Italian are written in
the OpenCCG dialect of CCG. The overall goal of our enterprise amounts to an
implementation of a (semi-)automatic method which, given a hand-written CCG,
generates a derivation- and meaning-preserving TFS grammar. The motivation for
doing this is at least threefold:

1. Faster Parser
The main rationale for our transformation method is driven by the need that
we are looking for a reliable and trainable (C)CG parser that is faster than
the one which comes with the OpenCCG system. People from the DFKI LT
group have co-developed the PET system (Callmeier, 2000), a highly-tuned
TFS parser written in C++, which originally grew out of the HPSG commu-
nity. In order to use such a TFS parser in a CG setting, the (combinatory)
rules and lexicon entries need to be transformed into a TFS representation.

2. Structured Language Model
Another major rationale for the transformation comes from the fact that the
CCG grammars are used for spoken language, operating on the output of a
speech recognizer. Although speech recognizers are based on trained sta-
tistical models, modern recognizers can be further tuned by supplying an

†The research described here has been partly financed by the TAKE project (take.dfki.de), funded
by the German Federal Ministry of Education and Research, and the European Integrated projects
CogX (cogx.eu), NIFTi (nifti.eu), and Aliz-e (aliz-e.org) under contract numbers 01IW08003, FP7
ICT 215181, 247870, and 248116. We would like to thank our reviewers for their useful comments.

110

additional structured language model. Given a TFS grammar for the trans-
formed CCG grammar, we would like to use the corpus-driven approxima-
tion method described in Krieger (2007) to generate a context-free approx-
imation of the deep grammar. This approximation then serves as our lan-
guage model for the recognizer. Again, as is the case for PET, software can
be reused here, since the method described in Krieger (2007) is implemented
for the external chart representation of the PET system.

3. Cross-Fertilization
We finally hope that our experiment provides insights on how to incorporate
descriptive means from CG (e.g., direct slash notation for categories) into
the HPSG framework, even though they are compiled out in the end. Thus,
specification languages for HPSG, such as TDL (Krieger, 1995), might be
extended by some kind of macro formalism, allowing a grammar writer to
state such extended rules. However, we will not speculate on this in the
paper.

In the midst of our implementation effort, a fourth reason became equally im-
portant:

4. Uncover Implicit Constraints
Derivations in the OpenCCG system are guided not only by the explicit con-
straints of the linguist (CCG grammar and lexicon), but also by hidden, non-
documented settings, hard-wired in the program code. Our implementation
makes them explicit in that they became declaratively represented in the TFS
grammar.

3 Categorial Grammar

Categorial grammar started with Bar-Hillel’s work in 1953 who adapted and ex-
tended Ajdukiewicz’s work by adding directionality to what Ajdukiewicz (by re-
ferring to Husserl) called “Bedeutungskategorie”. The grammatical objects in Bar-
Hillel’s system are called categories. The set of complex categories C can be de-
fined inductively by assuming a set of atomic categories A (e.g., s or np) and a set
of binary functor symbols F2 (usually / and \ for one-dimensional binary grammar
rules):

1. if a ∈ A then a ∈ C

2. if c, c′ ∈ C and f ∈ F2 then cfc′ ∈ C

The system of categories in its simplest form is usually equipped with two very
fundamental binary rules (or better, rule schemes), viz., forward (>) and backward
(<) functional application—this is called the AB calculus (for Ajdukiewicz & Bar-
Hillel). Here and in the following, we use the notation from Baldridge (2002),
originating from the work of Mark Steedman:

111

(>A) X/Y Y ⇒ X
(<A) Y X\Y ⇒ X

Depending on the kind of slash, complex category symbols in these rules look
to the right (forward) or to the left (backward) in order to derive a simpler category.
Such a framework is in the truest sense lexicalized, since the categories in these
rules are actually category schemes: there is no category X/Y, only instantiations,
such as, for instance, (s\np)/(s\np) for modal verbs.

Furthermore, and very importantly, concrete categories are only specified for
lexicon entries (the operator ` maps the word to its category):

defeat ` (s\np)/np

Not only are lexical entries equipped with a category, but also with a semantics.
Since Montague, categorial grammarians have often used the Lambda calculus to
make this explicit. Abstracting away from several important things such as tense,
we can define what is meant by the transitive verb defeat (: is used to separate the
syntactic category from the semantic of a lexicon entry):

defeat ` (s\np)/np : λx.λy.defeat(y, x)

The above two rules for functional application in fact indicate how the seman-
tics is supposed to be assembled, viz., by functional application:

(>A) X/Y : f Y : a ⇒ X : fa
(<A) Y : a X\Y : f ⇒ X : fa
f in the above two rules actually abbreviates λx.fx, so that the resulting

phrase on the right-hand side is in fact fa as a result of applying β-reduction to
(λx.fx)(a).

Given these two rule schemes, we can easily find a derivation for sentences,
such as Brazil defeats Germany:

np:Brazil (s\np)/np:λx.λy.defeat(y, x) np:Germany
np:Brazil s\np:λy.defeat(y,Germany)

s:defeat(Brazil,Germany)

A lot of linguistic phenomena can be perfectly handled by the two applica-
tion rules. However, many researchers have argued that the AB calculus should be
extended by rules that have a greater combinatory potential. CCG, for instance,
employs rules for forward/backward (harmonic & crossed) composition, substitu-
tion, and type raising (we only list the forward versions):

3.0.1 Forward Harmonic Composition

(>B) X/Y Y/Z ⇒ X/Z

3.0.2 Forward Crossed Composition

(>B×) X/Y Y\Z ⇒ X\Z

112

3.0.3 Forward Substitution

(>S) (X/Y)/Z Y/Z ⇒ X/Z

3.0.4 Forward Type Raising

(>T) X ⇒ Y/(Y\X)

Related to these rules are the three combinators (e.g., higher-order functions)
for composition B, subsitution S, and type raising T (see Steedman (2000)):

• Bfg ≡ λx.f(gx)

• Sfg ≡ λx.fx(gx)

• Tx ≡ λf.fx

In a certain sense, even functional application can be seen as a combinator,
since argument a can be regarded as a nullary function:

• Afa ≡ λx.fx(a)

The three combinators above indicate how semantics should be assembled
within the categorial rules. Semantics construction is addressed later when we
move to the TFS representation of the CCG rules.

4 Idea

The TFS encoding below distinguishes between atomic and complex categories.
Atomic categories such as s do not have an internal structure. However, atomic
categories in CCG are usually part of a structured inheritance lexicon, quite sim-
ilar to HPSG. Atomic categories here do have a flat internal structure, encoding
morpho-syntactical feature-value combinations. Thus, atomic categories in our
transformation will be realized as typed feature structures to fully exploit the po-
tential of typed unification.

Contrary to this, the most general functor category type has two subtypes /
(slash) and \ (backslash) and defines three appropriate features: 1ST (FIRST), 2ND

(SECOND), and MODE (for modalities, explained later). This encoding is similar to
the CUG encoding in Karttunen (1986) and Uszkoreit (1986). However, the DIR

(direction) feature is realized as a type, and the ARG (argument) and VAL (value)
features through features 1ST and 2ND. Our encoding is advantageous in that it

1. makes a complex functor hierarchy possible, even multi-dimensional func-
tors;

113

2. allows for functors of more than two arguments, thus going beyond the po-
tential of binary rules; and

3. need not look at the directionality of the functor in order to specify the proper
values for ARG and VAL (as is the case in Lambek’s notation).

Underspecified atomic categories in the CCG rules above are realized through
logic variables (coreferences) in the TFS rules below. Moreover, a distinguished
list-valued feature DTRS (daughters) is employed in the TFS representation to
model the LHS arguments of CCG rules.

5 Examples

We start with the TFS encoding of a proper noun, a transitive verb, and a modal
verb, followed by the basic representation of the forward versions of the CCG rules,
including a form of Lambda semantics in order to show how the compositional
semantic approach of categorial grammars translates into a TFS grammar.

5.1 Lexicon Entries

A proper noun entry, such as

Germany ` np : Germany

is mapped to a flat feature structure with distinguished attributes CAT and SEM:



germany
CAT np
SEM Germany




Actually, Germany is represented as a nullary function (i.e., a function with
zero arguments)




germany
CAT np

SEM



f
NAME Germany
ARGS 〈 〉







but this does not matter here, and we usually use the abbreviation further above.

The value of SEM is either a function specification (type f) with NAME and
ARGS features, or the representation of a Lambda term (type λ), encoded through
VAR and BODY. The body of a Lambda term might again be a Lambda term or a
function specification. Functional composition is encoded through an embedding
of function specifications.

114

The representation of transitive verbs is a straightforward translation of the
one-dimensional CCG specification, e.g.,

defeat ` (s \np)/np : λx.λy.defeat(y, x)

Note that the de-curried representation suggests that β-reduction for x happens
before y. Note further that even though x is bound first, it is the second argument
of defeat (see SEM|BODY|BODY|ARGS):




defeat

CAT




/

1ST



\
1ST s
2ND np




2ND np




SEM




λ
VAR x

BODY




λ
VAR y

BODY



f
NAME defeat
ARGS

〈
y , x

〉













The representation of modal verbs is more complicated because P in the com-
plex Lambda term below is not an argument like x (or x and y above), but instead
a function that is applied to x—it might even be a Lambda term as the example
Brazil should defeat Germany shows. Here is the categorial representation, fol-
lowed by the TFS encoding:

should ` (s \np)/(s \np) : λP.λx.should(Px)



should

CAT




/

1ST



\
1ST s
2ND np




2ND



\
1ST s
2ND np







SEM




λ

VAR



λ
VAR x
BODY b




BODY




λ
VAR x

BODY



f
NAME should
ARGS 〈 b]〉













115

5.2 Rules

Next comes the rule for Forward Functional Application:

(>A) X/Y : f Y : a ⇒ X : fa



>A
CAT X
SEM f

DTRS

〈




CAT



/
1ST X
2ND Y




SEM



λ
VAR a
BODY f






,

[
CAT Y
SEM a

]〉




Given this rule and the entries for should, defeat, and Germany, the twofold ap-
plication of (>A) yields the correct semantics for the VP should defeat Germany,
viz., λx.should(defeat(x,Germany)), or as a TFS, constructed via unification:




λ
VAR x

BODY




f
NAME should

ARGS

〈

f
NAME defeat
ARGS 〈x , Germany〉



〉







The TFS representation of the four rules to follow are Forward Harmonic
Composition, Forward Crossed Composition, Forward Substitution, and For-
ward Type Raising. The motivation for such kind of rules, can, e.g., be found in
Baldridge (2002).

(>B) X/Y : f Y/Z : g ⇒ X/Z : λx.f(gx)



>B

CAT



/
1ST X
2ND Z




SEM



λ
VAR x
BODY f

[
ARGS|FIRST g

]




DTRS

〈



CAT



/
1ST X
2ND Y




SEM|BODY f


,




CAT



/
1ST Y
2ND Z




SEM

[
VAR x
BODY g

]




〉




116

(>B×) X/Y : f Y\Z : g ⇒ X\Z : λx.f(gx)



>B×

CAT



\
1ST X
2ND Z




SEM



λ
VAR x
BODY f

[
ARGS|FIRST g

]




DTRS

〈



CAT



/
1ST X
2ND Y




SEM|BODY f


,




CAT



\
1ST Y
2ND Z




SEM

[
VAR x
BODY g

]




〉




(>S) (X/Y)/Z : f Y/Z : g ⇒ X/Z : λx.fx(gx)



>S

CAT



/
1ST X
2ND Z




SEM



λ
VAR x
BODY f

[
ARGS|REST|FIRST g

]




DTRS

〈




CAT




/

1ST



/
1ST X
2ND Y




2ND Z




SEM



λ
VAR x
BODY f







,




CAT



/
1ST Y
2ND Z




SEM



λ
VAR x
BODY g







〉




(>T) X : x ⇒ Y/(Y\X) : λf.fx



>T

CAT




/
1ST Y

2ND



\
1ST Y
2ND X







SEM




λ
VAR f

BODY



f
NAME f
ARGS 〈 x 〉







DTRS

〈[
CAT X
SEM x

]〉




117

6 Extensions

In this section, we outline several extensions of the basic CG system and show how
their TFSs representation look like.

6.1 $-Convention and Generalized Forward Composition

The VP should defeat Germany from the rule section can not only be analyzed by
a twofold application of (>A), but also by applying (>B) to should and defeat,
followed by (>A). Now, (>B) must be generalized in case we are even inter-
ested in ditransitive verbs, or even VPs with further PP attachments. Instead of
describing every possible alternative, Steedman (2000) devised a compact notation
using $-schemes to characterize functions of varying numbers of arguments, or as
Baldridge (2002) puts it: In essence, the $ acts as a stack of arguments that allows
the rule to eat into a category. For example, the schema s/$ is a representative for
the infinite set {s, s/np, (s/np)/np, . . .}.

Formally, the expansion of a $-category can be inductively defined as follows.
Let C be the set of complex categories, as defined earlier, F2 the set of binary
functor symbols, and let c ∈ C and f ∈ F2. Define

Cε := C ∪ {ε}

cfε := c

cfCε := {cfd | d ∈ Cε}

Then

cf$:= (cfCε)fCε

Let us move on to the rule for generalized forward composition (>Bn) which
employs $ and its TFS counterpart:

(>Bn) X/Y (Y/Z)/$ ⇒ (X/Z)/$



>Bn>1

CAT




/

1STn−1



/
1ST X
2ND Z




2ND $




DTRS

〈
 CAT



/
1ST X
2ND Y




,




CAT




/

1STn−1



/
1ST Y
2ND Z




2ND $







〉




118

The above TFS uses a “coordinated” path expression 1STn−1 at two places
inside the rule structure and is, in a certain sense, even worse than functional un-
certainty (Kaplan and Maxwell III, 1988), since it involves counting. To the best of
our knowledge, we are not aware of TFS formalisms which offer such descriptive
means. We thus understand the above structure as a schema that can be compiled
into k − 1 different concrete rules for 1 < n ≤ k.

Another way to carry over the meaning would be to add helper rules for each
$-rule which together simulate the expansion of a $-category. The efficiency of the
second solution, however, is questionable since it generates a lot of intermediate
edges, bearing the potential to blow up the search space of the parser.

We have thus opted for the first solution For the OpenCCG grammars that we
are using, k is set to 4, especially, since $ is used only in lexical type-changing
rules.

We finally note that >B1 is equivalent to the original rule >B. In case we
define 1ST0 := ε and assume that 2ND

.
= Z ∧ 2ND

.
= $ leads to Z = $ (features

are functional relations!), there is no need to specify >B1 separately.
In principle, other rule schemata might be generalized in such a way, but at the

expense of further uncertainty and overgeneration during parsing.

6.2 Atomic Categories & Morpho-Syntax

As indicated earlier, atomic categories in CCG usually do have a flat internal struc-
ture. For instance, the category si refers to an inflection phrase (Baldridge, 2002).
The TFS representation then uses si as a type, having the following definition:

IP ≡




si
SPEC boolean
ANT boolean
CASE case
VFORM fin
MARKING unmarked




Words in CCG usually refer to these more specialized categories; for instance,
the ECM verb believe ` (si\np)/sfin. Given such specific category information,
TFS unification takes care that the additional constraints are “transported” through-
out the derivation tree.

6.3 Modes & Modalized CCG

Besides having more control through specialized atomic categories as is shown
above, multi-modal CCG incorporates means from Categorial Type Logic to pro-
vide further fine-grained lexical control through so-called modalities; see Baldridge
and Kruijff (2003) for a detailed description. For example, the complex category
of the coordination particle and ` (si\si)/si which can lead to unwanted analyses
is replaced by the modalized category (si\?si)/?si.

119

In principle, modes can be “folded” into subtypes of the very general complex
category types / and \. We have, however, opted for an additional feature MODE

which takes values from the following atomic mode type hierarchy:

·
/ | \
? � ×

There are further modalities, represented as subtypes of � and ×, which are
not of interest to us here. Let us finally present the TFSs for and and the multi-
modal CCG forward type raising rule rule (>T) which even enforces modes to be
identical between the embedded and the outer slash.




and

CAT




/

1ST




\
1ST si
2ND si
MODE ?




2ND si
MODE ?










>T

CAT




/
MODE M
1ST Y

2ND




\
MODE M
1ST Y
2ND X







DTRS 〈 [CAT X] 〉




7 First Measurements

We have compared the performance of the CCG parser and the PET system on
a MacBook Pro (2GHz Core Duo, 32 bit architecture). The measurements were
carried out against a hand-crafted artificial test corpus of 5,000 sentences with an
average length of 7 and a maximal length of 12 words, including sentences with
heavy use of different kinds of coordination, such as Brazil will meet and defeat
Germany or Brazil should defeat Germany and Italy and England.

We have switched off the semantics and have only compared the syntactic cov-
erage, using categorial information, including modes. We have also switched off
the type raising rules in both parsers, since the OpenCCG parser seems to ignore
them in analyses licensed by the grammar theory. Packing in both parsers has
been switched on, supertagging switched off because PET does not provide a su-
pertagging stage, but also no models were available for the grammar at hand of the
OpenCCG parser.

120

We further note that we have obtained about twice as much analyses for PET
(approximately 15,000 analyses) as the OpenCCG system, the reason for this cur-
rently unclear. For instance, the CCG parser produces only one analysis for the
sentence Brazil should defeat Germany, even though a careful inspection of the
rules shows that two analyses are possible (as is the case for PET), viz.,

[(<A)Brazil [(>A) should [(>A) defeat Germany]]]

[(<A)Brazil [(>A) [(>B) should defeat]Germany]]

Even though we have doubled the number of analyses, PET is about one mag-
nitude faster (overall 2.67 vs. 28.9 seconds for the full set of 5,000 sentences).

Both PET and the OpenCCG system have implemented standard CYK parsers.
We believe that the difference in the running time is related to the choice of the
programming language (C++ vs. Java), but also to optimization techniques (Kiefer
et al., 1999), maintenance effort, and the still ongoing development of the PET
system by an active community, whereas the evolution of the core parsing engine
in the OpenCCG library seems to have ended several years ago.

To some extend, the above mismatch is related to the fact that certain “settings”
in the CCG are realized through program code, but not declaratively stated in the
lingware. For instance, the type raising rules can in principle be applied to arbitrary
categories, but, by default, the OpenCCG code limits them to NPs only. Given our
treatment, such a restriction can be easily stated in the TFSs for the type raising
rules, and we think that this is the right place to do so:




>T

CAT




/
1ST Y

2ND



\
1ST Y
2ND X







DTRS 〈 [CAT X np] 〉




Other “adjusting screws” in OpenCCG, e.g., the specification of the atomic
mode hierarchy (see last subsection) are also “casted” in program code (deeply
nested if-then-else statements that behave different from the mode hierarchy de-
scribed in the CCG papers), whereas our treatment uses a type hierarchy, helping
to better understand and manipulate the parser’s output. Given these remarks, ex-
plaining missing analyses in OpenCCG has required a deep inspection of the pro-
gram code. Besides the MODE dimension, we found a further orthogonal binary
ABILITY dimension with values inert and active that was hidden in the program
code (Java classes) for each categorial rule. The PET version of CCG still over-
generates (to a lesser extent), so it is very likely that we still overlooked some of
the “traps”.

121

8 Moving Further

The transformation schema described in this paper has been manually constructed
for the rules, the lexical types, and a small set of lexicon entires. In order to auto-
matically transform the OpenCCG grammars from our Lab for English and Italian,
we have implemented code that operates on the XML output of the ccg2xml
converter for CCG’s WebCCG input format. This includes files for rules, general
types, and so-called families which are collections of lexical types and correspond-
ing lexical entries.

Contrary to traditional CG and CCG, OpenCCG does not use Lambda seman-
tics, but instead comes with a kind of Davidsonean event semantics, comparable
to MRS, building on Blackburn’s hybrid modal logic: Hybrid Logic Dependency
Semantics or HLDS (Baldridge and Kruijff, 2002). Looking more closely on the
seemingly different notation, it becomes quite clear that HLDS formulae can be
straightforwardly translated into a TFS representation. We can only throw a glance
on a small example at the end of this paper.

Originally, the HLDS representations were built up in tandem with the con-
struction of the categorial backbone (Baldridge and Kruijff, 2002), comparable to
the construction of Lambda semantics in our rules before. White and Baldridge
(2003) has improved on this construction by attaching the semantics, i.e., the ele-
mentary predications (EPs), directly to the atomic categories from which a complex
category is built up; see Zeevat (1988) for a similar treatment in UCG.

Consider the sentence Marcel proved completeness from Kruijff and Baldridge
(2004). Subscripts attached to atomic categories (the nominals) can be used to ac-
cess them. The satisfaction operator @ that is equipped with a subscript e indicates
that the formulae to follow hold at a state named e:

proved ` (se\npx)/npy :
@eprove ∧@e〈TENSE〉past ∧@e〈ACT〉x ∧@e〈PAT〉y

Marcel ` npm : @mMarcel
completeness ` npc : @ccompleteness

By conjoining the EPs during the application of (>A) and (<A), we immediately
obtain

Marcel proved completeness ` se :
@eprove ∧@e〈TENSE〉past ∧@e〈ACT〉m ∧
@e〈PAT〉c ∧@mMarcel ∧@ccompleteness

Exactly these effects can be achieved through unification in our framework.
The CCG nominals are realized through logic variables (coreference tags), atomic
categories, such as s or np are assigned a further feature INDEX, cospecified with
the semantics, and the nominals are realized through ordinary features. In the-
ory, SEM is a set-valued feature whose elements are combined conjunctively (as in
HLDS or MRS). Since TDL (and PET) does not provide sets, the usual list imple-
mentation is used. This gives us the following TFSs (we have omitted the explicit

122

representation of the name of the event variables e, m, and c in the individual EPs
below):




proved

CAT




/

1ST




\
1ST

[
s
INDEX e

]

2ND

[
np
INDEX x

]




2ND

[
np
INDEX y

]




SEM e 〈prove, [TENSE past], [ACT x], [PAT y] 〉







marcel

CAT

[
np
INDEX m

]

SEM m 〈Marcel 〉







completeness

CAT

[
np
INDEX c

]

SEM c 〈 completeness 〉




Alternatively, the list representation of EPs might be replaced by a single com-
plex feature structure. However, the list implementation makes it easy to imple-
ment relational information, e.g., the representation of several modifiers. Given
the above encoding, there is no longer a need to specify semantics construction
in each of the categorial rule schemata: semantics construction simply “happens”
here when categorial information is unified. In a certain sense, this is easier and
more elegant than representing the effects of the different combinators A, B, S, T in
the different kinds of rule schemata, as we have described in the beginning of this
paper. More complex constructions involving, e.g., coordination particles, suggest
that the list under SEM is in fact a difference list in order to ease the implementation
of a list append that is not required in the example above.

9 More Measurements and Outlook

The measurements reported in section 7 involved a hand-written TFS PET gram-
mar that we have compared against an equivalent OpenCCG grammar. This exper-
iment did not involve any kind of Lambda semantics.

The measurements described here are related to the hand-written HLDS-based
OpenCCG grammar that is used in the robots to interact with humans. We have al-
most managed to automatically transform the medium-size English grammar with
some minor manual interaction.

Again, both PET and the OpenCCG parser used packing, but did not involve
a supertagging stage. We used a small test corpus of 246 sentences coming with

123

the grammar. We were able to reproduce the same number of passive edges in both
parsers, so we are pretty sure that the translation, described in the previous section,
is in fact correct. For the MacBook Pro from section 7, we obtained the following
numbers (startup times taken out):

• PET: 9.5 seconds, 170 MB RAM

• OpenCCG: 75.6 seconds, 780 MB RAM

Overall, this gives us a speedup factor of about 8, compared to 10 in section 7.
After having almost finished the translation process, we hope to address item 2

from section section 2 in the very near future. This involves the application of the
approximation method (Krieger, 2007) and the use (of parts) of the approximated
grammars as structured language models in the speech recognizers (Sphinx, Julius,
Loquendo), used by the Talking Robots group at DFKI.

References

Baldridge, Jason. 2002. Lexically Specified Derivational Control in Combinatory
Categorial Grammar. Ph. D.thesis, University of Edinburgh, Division of Infor-
matics, Institute for Communicating and Collaborative Systems.

Baldridge, Jason and Kruijff, Geert-Jan M. 2002. Coupling CCG and Hybrid Logic
Dependency Semantics. In Proceedings of the 40th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 319–326.

Baldridge, Jason and Kruijff, Geert-Jan M. 2003. Multi-Modal Combinatory Cate-
gorial Grammar. In Proceedings of the 10th Conference of the European Chapter
of the Association for Computational Linguistics, pages 211–218.

Barendregt, Henk. 1984. The Lambda Calculus, its Syntax and Semantics. Amster-
dam: North-Holland.

Bouma, Gosse. 1988. Modifiers and Specifiers in Categorial Unification Grammar.
Linguistics 26, 21–46.

Calder, Jonathan, Klein, Ewan and Zeevat, Henk. 1988. Unification Categorial
Grammar: A Concise, Extendable Grammar for Natural Language Processing.
In Proceedings of the 12th International Conference on Computational Linguis-
tics, pages 83–86.

Callmeier, Ulrich. 2000. PET—A Platform for Experimentation with Efficient
HPSG Processing. Natural Language Engineering 6(1), 99–107.

Kaplan, Ronald M. and Maxwell III, John T. 1988. An Algorithm for Functional
Uncertainty. In Proceedings of the 12th International Conference on Computa-
tional Linguistics, pages 297–302.

124

Karttunen, Lauri. 1986. Radical Lexicalism. Technical Report CSLI-86-68, Center
for the Study of Language and Information, Stanford University.

Kiefer, Bernd, Krieger, Hans-Ulrich, Carroll, John and Malouf, Rob. 1999. A Bag
of Useful Techniques for Efficient and Robust Parsing. In Proceedings of the
37th Annual Meeting of the Association for Computational Linguistics, ACL-99,
pages 473–480.

Krieger, Hans-Ulrich. 1995. TDL—A Type Description Language for Constraint-
Based Grammars. Foundations, Implementation, and Applications. Ph. D.thesis,
Universität des Saarlandes, Department of Computer Science.

Krieger, Hans-Ulrich. 2007. From UBGs to CFGs—A Practical Corpus-Driven
Approach. Natural Language Engineering 13(4), 317–351, published online in
April 2006.

Kruijff, Geert-Jan M. and Baldridge, Jason. 2004. Generalizing Dimensionality
in Combinatory Categorial Crammar. In Proceedings of the 20th International
Conference on Computational Linguistics.

Steedman, Mark. 2000. The Syntactic Process. Cambridge, MA: MIT Press.

Uszkoreit, Hans. 1986. Categorial Unification Grammars. In Proceedings of the
11th International Conference on Computational Linguistics, pages 187–194.

White, Michael and Baldridge, Jason. 2003. Adapting Chart Realization to CCG.
In Proceedings of the 9th European Workshop on Natural Language Generation.

Zeevat, Henk. 1988. Combining Categorial Grammar and Unification. In Uwe
Reyle and Christian Rohrer (eds.), Natural Language Parsing and Linguistic
Theories, pages 202–229, Reidel, Dordrecht.

125

