
A left-branching grammar design for
incremental parsing

Petter Haugereid
Nanyang Technological University, Singapore and University of Haifa, Israel

Mathieu Morey
Aix-Marseille Université, France

Proceedings of the 19th International Conference on
Head-Driven Phrase Structure Grammar

Chungnam National University Daejeon

Stefan Müller (Editor)

2012

Stanford, CA: CSLI Publications

pages 181–194

Haugereid, Petter & Mathieu Morey. 2012. A left-branching grammar design
for incremental parsing. In Stefan Müller (ed.), Proceedings of the 19th Interna-
tional Conference on Head-Driven Phrase Structure Grammar, Chungnam Na-
tional University Daejeon, 181–194. Stanford, CA: CSLI Publications. DOI:
10.21248/hpsg.2012.11.

https://orcid.org/0000-0003-3077-8983
https://orcid.org/0000-0002-7403-5359
http://doi.org/10.21248/hpsg.2012.11
http://creativecommons.org/licenses/by/4.0/


Abstract

This paper presents a left-branching constructionalist grammar design
where the phrase structure tree does not correspond to the conventional con-
stituent structure. The constituent structure is rather reflected by embeddings
on a feature STACK. The design is compatible with incremental processing,
as words are combined from left to right, one by one, and it gives a sim-
ple account of long distance dependencies, where the extracted element is
assumed to be dominated by the extraction site. It is motivated by psycholin-
guistic findings.

1 Introduction

Until recently natural language parsing was commonly conceived as a chart-based,
head-driven process, in particular among the HPSG community (Ninomiya et al.,
2009; Ytrestøl, 2011). This conception has had a significant impact on the design
of implemented HPSG grammars and even more so when parsing efficiency was
desired. Psycholinguistic studies however suggest that human sentence processing
is not head-driven nor chart-based but incremental and deterministic. Such findings
are of wide relevance as they suggest different means of achieving efficient parsing,
that, in turn, call for different grammar designs.

The notion of incremental parsing/processing is well established in the psy-
cholinguistic literature, and refers to the notion of words being added to an overall
syntactic structure one by one. This is evidenced by studies showing that sentences
in head-final languages do not require a higher processing effort than a head-initial
sentence, even though the head, which according to traditional constituent analysis
is required to form a constituent, appears after several of its arguments. The exam-
ple in (1) taken from Swets et al. (2008) shows how as many as 7 arguments and
adjuncts may appear before the first verb in Japanese.

(1) John-ga
John-NOM

denwa-de
phone-by

Mary-ni
Mary-DAT

Tom-ga
Tom-NOM

asa
morning

rokuji-ni
six-at

inu-ni
dog-DAT

esa-o
food-ACC

ageta
gave

ka
if

kiita.
asked

John asked Mary by phone if Tom gave his dog food at six in the morning.

The notion of deterministic parsing refers to the aim of producing a unique
analysis for a sentence, which, in an incremental setting, usually implies to make
decisions at each step (Ytrestøl, 2011). This is suggested by evidence that humans
parse structurally ambiguous sentences more efficiently than structurally unam-
biguous sentences. The examples in (2) are taken from Van Gompel et al. (2001).

†We would like to thank the audience at HPSG 2012, Daejeon, South Korea, and three anony-
mous reviewers for their useful comments and feedback. This research was supported in part by
the Erasmus Mundus Action 2 program MULTI of the European Union, grant agreement number
2009-5259-5.

182



Experiments show that the ambiguous sentence in (2a) is processed faster than the
unambiguous sentences in (2b) and (2c). This is contrary to what one would expect
from a deep non-deterministic parser, which generally requires a higher processing
effort to process ambiguous sentences than unambiguous sentences.

(2) a. The maid of the princess who scratched herself in public was terribly
humiliated.

b. The son of the princess who scratched himself in public was terribly
humiliated.

c. The son of the princess who scratched herself in public was terribly
humiliated.

Much of the linguistic analysis in the psycholinguistic literature is conducted
within the framework of GB/Minimalism. For example, Phillips (2003) shows
that given a Government and Binding analysis involving Larsonian shells (Larson,
1988; Culicover, 1997), it is possible to parse a tree incrementally, from left-to-
right, with a right-corner parser. The aim of this paper is to show that it is possible
to achieve a similar analysis by means of an appropriately designed HPSG gram-
mar that retains full compatibility with a standard bottom-up HPSG parser. This
grammar design characteristically provides an analysis of long-distance dependen-
cies where it is assumed that the fronted element is realized at the bottom left corner
of the tree, rather than as the first daughter of the top node.

A grammar fragment for English will be introduced, which on the one hand
makes comparable generalisations about syntactic structures as the Principles and
Parameters theory, but which on the other hand is radically different in that it em-
ploys left-branching trees, rather than right-branching trees. The account does not
assume verb movement. The grammar fragment is implemented with the LKB
system (Copestake, 2002), which is a grammar development environment mainly
used to implement HPSG grammars. It is a bottom up parser that employs phrase
structure rules. All grammatical objects are expressed as typed feature structures
(Carpenter, 1992). The implemented grammar has much of the feature geome-
try in common with HPSG grammars, but some central assumptions are different.
Most importantly, the grammar is a constructionalist grammar, and not a lexicalist
grammar. This implies that open lexical items in principle do not constrain their
syntactic context, and do not carry information about their argument structure. In-
stead, it is assumed that the syntactic structure is determined by functional signs
like inflections, function words and phrase structure rules. The argument structure
is determined by sub-constructions, which are syntactic realisations of Davidsonian
sub-events.1

1The grammar fragment presented is a modified version of a grammar for Norwegian, Norsyg,
(http://moin.delph-in.net/NorsygTop) and is a part of the DELPH-IN effort (http:
//www.delph-in.net/)

183



2 A Left-branching grammar design

The grammar fragment presented in this paper has a left-branching grammar de-
sign, which allows for words to be incorporated into the overall structure one by
one. The design can be compared to Left-Associative Grammar (LAG) (Hausser,
1989), which also combines words to the overall structure one by one, resulting in
a binary left-branching tree. But where LAG does not construct anything corre-
sponding to a conventional constituent tree, but rather makes the step directly from
the binary left-branching syntactic tree to a semantic representation, our approach
employs a feature STACK in order to represent the constituent structure. Similarly
to LAG the semantic representation is constructed “on the fly,” as the sentence is
processed from left to right. In section 4 we will return to how the constituent
structure is reflected by the STACK feature. In this section, however, we will give
an introduction to a couple of the features involved in the left-branching grammar
design.

The tree in Figure 1 shows how a subordinate clause is analysed with the left-
branching grammar design.2 The head of the clause is the complementizer. The
verbs and arguments attach to the complementizer projection from the right. Ar-
guments are selected via the ARG(UMENT) feature with the valence rules. The
ARG(UMENT) feature is a pivot for four different argument features, C-ARG1, C-
ARG2, C-ARG3, and C-ARG4, corresponding to what in Government and Binding
would refer to the ‘external argument’, ‘direct object internal argument’, ‘indirect
object internal argument’, and ‘goal/locative oblique’, respectively. The grammar
design has a mechanism that allows the grammar writer to constrain what combi-
nation(s) of arguments a verb can have. The rules that combine the arguments with
the head projection (the valence rules) link the argument to the main predicate of
the clause. Until the main verb is selected, the main predicate is left underspecified.
This makes it possible to integrate the semantic linking of arguments before the
main verb is encountered. The mechanism for constraining what combination(s)
of arguments that can appear in a clause will not be a topic of this paper. (See
Haugereid (2007, 2009, 2012) for detailed accounts of how arguments are linked,
and how verbs are allowed to appear with different constellations of arguments.)

Verbs are selected via the VBL (VERBAL) feature with the verbal rule. As
shown in Figure 1, a complementizer constrains the verb it selects to have the
HEAD value aux-verb, which means that it is either an auxiliary or a main verb,
and it also requires the TENSE value to be finite. When a verb is realized by the
verbal phrase, the VBL value of the selected verb becomes the VBL value of the
phrase. This allows a verb to constrain whether it will be followed by another verb
and what kind of verb it is. The auxiliary in Figure 1 constrains the following
verb to be a main verb past participle, while the main verb has the VBL constraint

2The feature geometry in the implemented grammar is richer and more embedded than the one
shown here. For expository reasons, features that are not relevant for the present discussion have
been omitted. Also, the force rules that come on top of all parsed sentences in the implemented
grammar have not been included.

184





valence-binary
HEAD 1

VBL 6







verbal-phrase
HEAD 1

VBL 6

ARG 4







verbal-phrase
HEAD 1

VBL 5

ARG 4







valence-binary
HEAD 1

VBL 2

ARG 4

[
CASE non-subj

]







word
HEAD 1 compl

VBL 2

[
HEAD aux-verb
TENSE finite

]

ARG 3

[
CASE subj-case

]




that

3NP

John

2




word
HEAD aux
TENSE pres

VBL 5

[
HEAD verb
TENSE ppart

]




has

5



word
HEAD verb
VBL 6 anti-ss




admired

4NP

Mary

Figure 1: Selection of arguments and verbs in a subordinate clause

anti-synsem, which means that no more verbs can be selected.
The fact that the main verb is selected by the overall structure, and that argu-

ments can be linked before the main verb is encountered, is due to constructionalist
design of the grammar. The underlying assumption is that the syntactic rules to-
gether with function words and inflections provide a skeleton that the open class
words fit into. By splitting a construction up into sub-constructions, which are
realized as single syntactic rules, function words, or inflections, the overall con-
struction can be build incrementally, and the open class words are fitted into this
construction as they appear.

3 Long Distance Dependencies

Contrary to the analysis of subordinate clauses just presented, the analysis of En-
glish main clauses assumed in the proposed grammar design implies the use of the
HPSG SLASH feature.

The use of a slash to account for long-distance dependencies in a monostratal
account was introduced by Gerald Gazdar (1981), where a trace of the extracted
item was assumed in the extraction site, and the slash feature would establish a
link between the trace and the filler. The slash feature would “percolate up” the
tree with the information about the trace.

185



The mechanism behind the more recent trace-less account of long distance
dependencies in Bouma et al. (2001) involves entering all arguments and modifiers
of a verb onto a separate DEPS (DEPENDENTS) list and retrieving the slash from
this list. The DEPS list is created by means of the Argument Structure Extension
constraint shown in (3).

(3) Argument Structure Extension:

verb ⇒




ARG-ST 1

DEPS 1 ⊕ list
(

adverbial
)



Since there is no limit to the potential number of adjuncts added to the DEPS

list by the Argument Structure Extension constraint, the number of possible lexical
descriptions of a verb is infinite. This is problematic from a psycholinguistic per-
spective, since it means that the DEPS list cannot be fixed before the parsing of the
sentence has reached a state where the number of adjuncts is determined (or pos-
sible to determine), and the SLASH mechanism ends up as a potential post-parsing
process. This problem is acknowledged by the authors:

The infinity which is a consequence of Argument Structure Extension
is also similar to the infinity which arises as a consequence of recur-
sive lexical rules (i.e. rules which may apply to their own output).
For example, the Adjunct Lexical Rule allows a single lexical item to
give rise to an infinite number of derived items. As argued in van No-
ord and Bouma (1994), the computational problem posed by this kind
of recursion can be solved by reformulating lexical rules as recursive
constraints on lexical entries, whose evaluation can be delayed to a
point where only a finite number of solutions remain (typically, after
some syntactic processing has taken place). (Bouma et al., 2001, 15)

The account of long distance dependencies in this paper is similar to the Gaz-
dar (1981) “trace” account, apart from the fact that the SLASH feature “percolates
down” the tree, rather than “up”. The tree in Figure 2 is an analysis of the Wh-
question Who does John admire?3

At the bottom of the tree, the head filler rule combines the fronted element (the
NP Who) with the auxiliary (does). The NP is entered onto the SLASH list. The
binary filler rule is illustrated in (4). The next two rules, the binary valence rule and
the verbal predicate rule, combine the NP John and the verb admire with the head
projection. (Both these rules are head-initial.) The SLASH feature of the daughter
is reentered in the mother in both rules. And finally, at the top of the tree, the
valence extraction rule unifies the element on the SLASH list of its daughter with
the extracted argument. This rule is illustrated in (5).

3There has been some overgeneralization with regard to what information is reentered in the
SLASH list in the filler and extraction rules. In reality, only the HEAD, VAL(ENCE), CONT(ENT), and
CASE features are copied across.

186






valence-extr
HEAD 2

VBL 5

SLASH 〈〉







verbal-phrase
HEAD 2

VBL 5

ARG 1

SLASH
〈

1

〉







valence-binary
HEAD 2

VBL 3

SLASH
〈

1

〉







filler-binary
HEAD 2

VBL 3

ARG 4

SLASH
〈

1

〉




1NP

Who



word
HEAD 2 aux
VBL 3




does

4NP

John

3



word
HEAD 2 verb
VBL 5 anti-synsem




admire

Figure 2: The SLASH feature: Fronted object.

(4)



filler-binary

SLASH
〈

1

〉

ARGS
〈

1 ,
[
SLASH 〈〉

]〉




(5)



valence-extr
SLASH 〈〉

ARGS

〈


ARG 2

SLASH
〈

2

〉


〉




187



It is assumed that also subjects undergo the SLASH mechanism when they ap-
pear as the first constituent in the clause. The sentence John admires Mary is given
the analysis in Figure 3. Here, the subject, John, is filled in by the unary head-filler
rule, and subsequently entered onto the SLASH list by the unary extraction rule.
The unary filler rule is shown in (6). The rule can be seen as the combination of
the filled-in constituent and an empty auxiliary.

(6)



filler-unary
HEAD aux

SLASH
〈

1

〉

ARGS
〈

1

〉




[valene-binarySLASH 〈〉

]

[verbal-phraseSLASH 〈〉

]

[valene-extrSLASH 〈〉

]




�ller-unaryARG 1SLASH 〈
1

〉




1NPJohn
Vadmires

NPMary

Figure 3: The SLASH feature: Fronted subject.

4 Parsing with the left-branching grammar design

The left-branching grammar design does not represent constituents in the syntactic
tree, as is common in most other frameworks.4 In this section, it will be shown how
the constituent structure of an utterance is reflected, and then how the design opens
for incremental processing in a way which is compatible with psycholinguistic
findings.

4As mentioned, Hausser’s Left-Associative Grammar is an exception.

188



4.1 Constituency

The left-branching grammar design represents constituents by means of a stack-
ing/popping mechanism. This mechanism allows the parser to enter embedded
structures by entering selected syntactic and semantic features of the matrix con-
stituent on a stack while taking on features of the embedded structure. When the
embedded structure has been processed, the matrix features are popped from the
stack, and the processing of the matrix constituent proceeds. Examples of con-
stituents where this mechanism is employed are NPs, PPs, CPs, and IPs. The
mechanism allows for multiple embeddings.

The STACK mechanism is motivated by the fact that gaps can appear inside em-
bedded constituents. The SLASH feature is not affected by the STACK mechanism,
in the sense that while the syntactic HEAD and VAL features and the semantic HOOK

features are entered onto the stack, the SLASH feature is passed up from the (first)
daughter to the mother.5 Since the SLASH feature in this way is passed on to the
embedded structure, rather than the stack, the mechanism allows us to keep the as-
sumption that the extraction rule dominates the filler rule, also when the extraction
site is in an embedded structure.6

The STACK mechanism consists of two types of rules: i) the embedding rules,
which enter selected features of the matrix constituent on the STACK list, and ii)
the popping rule, which pops the features of the matrix constituent from the stack
and takes them on. The stacking/popping mechanism is illustrated for the CP that
he slept in (7) in Figure 4.7

(7) John says that he slept.

The use of the stack reflects the constituent structure of a parsed string. In
(7), there is one embedding, the subordinate clause. The embedding rule and the
popping rule marks the beginning and the end of the embedded constituent. The
constituent structure of this clause is given in Figure 5.

The ambiguous sentence in (8) has up to three levels of embedding (CP, PP, and
DP). The two possible constituent structures of the sentence are given in Figure 6
and Figure 7. The different PP attachment is accounted for by letting the rule that
pops the complementizer projection apply either after the PP embedding rule (low
PP attachment) or before the PP embedding rule (high PP attachment).

(8) John says that he slept in the garden.
5An exception to this principle is when the embedded constituent is an NP. (See discussion in

Section 5.)
6The percolation of the SLASH feature from mother to (initial) daughter in the left-branching

structures makes the presence of a gap accessible to all constituents appearing between the filler and
the gap, and hence offers a straightforward account of the registering of the extraction path that is
reflected on verbs and complementizers in languages like Chamorro (Chung, 1998) and Irish (Mc-
Closkey, 1979), one of the motivations behind the no-trace account of long distance dependencies in
Bouma et al. (2001).

7Only the reentrancies of the HEAD feature is displayed in this analysis. As mentioned, also the
VAL features and the semantic HOOK are entered into the STACK.

189





popping-rule
HEAD 1 aux
STACK 3〈〉







HEAD compl

STACK 2

〈[
HEAD 1

]〉
⊕ 3




[
HEAD compl
STACK 2

]




embedding-rule
HEAD compl

STACK 2

〈[
HEAD 1

]〉
⊕ 3




[
HEAD 1 aux
STACK 3〈〉

]

[
HEAD aux
STACK 3〈〉

]

[
HEAD aux
STACK 3〈〉

]

NP

John

AUX

∅

NP

V

says

C

that

NP

he

V

slept

Figure 4: STACK mechanism in embedded clause

AUXP

NPi AUX NPi V CP

John ∅ says C NP V

that he slept

Figure 5: Constituent structure of sentence with subordinate clause

The fact that the left-branching grammar design operates with a stack, should
normally make it non-incremental. It is however not so that constituents are put

190



AUXP

NPi AUX NPi V CP

John ∅ says C NP V PP

that he slept P NP

in D N

the garden

Figure 6: Constituent structure of sentence with subordinate clause. Low PP at-
tachment.

AUXP

NPi AUX NPi V CP PP

John ∅ says C NP V P NP

that he slept in D N

the garden

Figure 7: Constituent structure of sentence with subordinate clause. High PP at-
tachment

on a stack for later processing. It is rather a way to keep track of what level of
embedding the parser is operating on, and only a few selected features of the ma-
trix structure are entered. It is comparable to the use of SLASH in HPSG, which
function is to make sure that the values of certain features are reentered in another
part of the structure in order to account for long-distance dependencies.

4.2 Efficient processing of ambiguous structures

Even though the left-branching grammar design is incremental, it expresses the
same ambiguities as other constraint-based grammars. In traditional chart-based
parsing, ambiguities always add complexity, thus the more ambiguous an utter-
ance is, the bigger is the processing effort for the parser. This contrasts with a
psycholinguistic study by Swets et al. (2008) which shows that processing of am-
biguous syntactic structures actually can be more efficient than that of correspond-
ing unambiguous structures.

The left-branching grammar design however naturally lends itself to incremen-
tal processing and is thus inherently compatible with deterministic parsing strate-

191



gies. Instead of conducting a full analysis of all possible readings of an ambiguous
utterance and performing a parse ranking after all the analyses are finished, an al-
ternative strategy consists in having the parser make local decisions after each word
is processed given the information available at that stage, that is, the structure that
has been built so far and the word that is added to the structure. Assuming that at
each step, a default analysis is available, parsing an ambiguous structure can in fact
turn out to be more efficient on average than an unambiguous structure.

Unambiguous sentences can lead a parser using a deterministic incremental
strategy into garden paths where it has to backtrack and do parts of the analy-
sis over. Incremental deterministic parsers have been proposed for HPSG by Ni-
nomiya et al. (2009) and Ytrestøl (2011), in the form of shift-reduce parsers with
backtracking mechanisms.

5 Discussion

In the presentation of long distance dependencies in Section 3, the SLASH feature
is “detached” from the constituent tree. This makes it possible to give a very simple
account of long distance dependencies, namely one where the gap dominates the
filler. The dependency between the gap and the filler is accounted for by the SLASH

feature, which goes from mother to the first daughter.
The presentation did not include the treatment of NP constituents. Like the

subordinate clause constituents and the PP constituents, NP constituents are also
analyzed as embedded structures, but in contrast to the other embedded structures
mentioned, the SLASH value will here be transferred to the STACK, rather than
directly to the mother (and hence the embedded constituent). This accounts for
island effects of complex NPs, where elements cannot be extracted from complex
NPs (Ross, 1967, 118–158).

All elements that are represented as constituents in the constituent trees in (5)
and (6) can be coordinated. Coordination can be accounted for by means of coor-
dination rules, which, when one conjunct is parsed, will initiate another conjunct,
which will be coordinated with the first.8 Each conjunct will get the same SLASH

list from the matrix constituent, and so coordination island effects are accounted
for.

As in other HPSG grammars, the semantics is composed in parallel with the
syntax. This means that there will be a (partial) semantic representation for each
word added to the structure. The constructionalist design of the grammar allows
arguments to be linked as they appear. So even if the language is verb final, like
Japanese, the arguments will be linked instantly. With a lexicalist design on the
other hand, the arguments of a verb cannot be linked before the verb itself has been
parsed. So given a verb-final sentence, the whole sentence must be parsed before
the arguments can be linked (given that the parsing is done from left to right).

8For the moment, the grammar has special rules to account for coordination of VPs which in the
analysis presented does not have a designated constituent.

192



6 Conclusion

The grammar design that has been presented is radically different from standard
HPSG. The most striking difference is probably the fact that the syntactic structure
is not reflecting the constituent structure, but rather the parsing strategy. This is a
result both of providing a simple account of long distance dependencies as well as
making the grammar compatible with deterministic incremental processing in line
with psycholinguistic findings.

References

Bouma, G., Malouf, R., and Sag, I. A. (2001). Satisfying constraints on extraction
and adjunction. Natural Language and Linguistic Theory, 1(19), 1–65.

Carpenter, B. (1992). The Logic of Typed Feature Structures with Applications to
Unification-based Grammars, Logic Programming and Constraint Resolution,
volume 32 of Cambridge Tracts in Theoretical Computer Science. Cambridge
University Press, New York.

Chung, S. (1998). The Design of Agreement: Evidence from Chamorro. Folktales
of the World Series. University of Chicago Press.

Copestake, A. (2002). Implementing Typed Feature Structure Grammars. CSLI
publications.

Culicover, P. W. (1997). Principles and Parameters. An Introduction to Syntactic
Theory. Oxford University Press.

Gazdar, G. (1981). Unbounded dependencies and coordinate structure. Linguistic
Inquiry, 12, 155–184.

Haugereid, P. (2007). Decomposed phrasal constructions. In S. Müller, editor, Pro-
ceedings of the 14th International Conference on Head-Driven Phrase Structure
Grammar, Stanford, CA. CSLI Publications.

Haugereid, P. (2009). A constructionalist grammar design, exemplified with Nor-
wegian and English. Ph.D. thesis, NTNU, Norwegian University of Science and
Technology.

Haugereid, P. (2012). A grammar design accommodating packed argument frame
information on verbs. International Journal of Asian Language Processing. To
appear.

Hausser, R. (1989). Computation of language: An essay on syntax, semantics, and
pragmatics in natural man-machine communication. Springer-Verlag.

Larson, R. K. (1988). On the double object construction. Linguistic Inquiry, 19,
335–391.

McCloskey, J. (1979). Transformational Syntax and Model-Theoretic Semantics.
Dordrecht: Reidel.

Ninomiya, T., Matsuzaki, T., Shimizu, N., and Nakagawa, H. (2009). Deterministic
shift-reduce parsing for unification-based grammars by using default unification.
In Proceedings of the 12th Conference of the European Chapter of the ACL

193



(EACL 2009), pages 603–611, Athens, Greece. Association for Computational
Linguistics.

Phillips, C. (2003). Linear order and constituency. Linguistic Inquiry, 34, 37–90.
Ross, J. R. (1967). Constraints on variables in syntax. Ph.D. thesis, MIT.
Swets, B., Desmet, T., Clifton Jr., C., and Ferreira, F. (2008). Underspecification of

syntactic ambiguities: Evidence from self-paced reading. Memory & Cognition,
36(1), 201–216.

Van Gompel, R., Pickering, M., and Traxler, M. (2001). Reanalysis in sentence
processing: Evidence against current constraint-based and two-stage models.
Journal of Memory and Language, 45(2), 225–258.

van Noord, G. and Bouma, G. (1994). Adjuncts and the processing of lexical rules.
In Proceedings of the 15th conference on Computational linguistics-Volume 1,
pages 250–256. Association for Computational Linguistics.

Ytrestøl, G. (2011). Optimistic backtracking - a backtracking overlay for deter-
ministic incremental parsing. In Proceedings of the ACL 2011 Student Session,
pages 58–63, Portland, OR, USA. Association for Computational Linguistics.

194


