
What grammars are, or ought to be

Geoffrey K. Pullum
University of Edinburgh

Proceedings of the 26th International Conference on
Head-Driven Phrase Structure Grammar

University of Bucharest

Stefan Müller, Petya Osenova (Editors)

2019

Stanford, CA: CSLI Publications

pages 58–78

Keywords: grammars, HPSG, constraints, model-theoretic syntax

Pullum, Geoffrey K. 2019. What grammars are, or ought to be. In Stefan Müller &
Petya Osenova (eds.), Proceedings of the 26th International Conference on Head-
Driven Phrase Structure Grammar, University of Bucharest, 58–78. Stanford, CA:
CSLI Publications. DOI: 10.21248/hpsg.2019.4.

https://orcid.org/0000-0002-7748-8847
http://doi.org/10.21248/hpsg.2019.4
http://creativecommons.org/licenses/by/4.0/

Abstract

Progress toward distinguishing clearly between generative and model-
theoretic syntactic frameworks has not been smooth or swift, and the
obfuscatory term ‘constraint-based’ has not helped. This paper reviews
some elementary subregular formal language theory relevant to compar-
ing description languages for model-theoretic grammars, generalizes the
results to trees, and points out that HPSG linguists have maintained an
unacknowledged and perhaps unintended allegiance to the idea of strictly
local description: unbounded dependencies, in particular, are still being
conceptualized in terms of plugging together local tree parts annotated
with the SLASH feature. Adopting a description language with quanti-
fiers holds out the prospect of eliminating the need for the SLASH feature.
We need to ask whether that would be a good idea. Binding domain phe-
nomena might tell us. More work of both descriptive and mathematical
sorts is needed before the answer is clear.

1 Introduction

What sort of system should we employ to give a formal description of a hu-
man language? Two sharply distinct views compete for linguists’ attention.
One emerged in the mid 1950s, when Chomsky persuaded most younger lin-
guists that grammars should be formalized as nondeterministic constructive
set generators composed of an initial symbol (traditionally S) and a set of
expansion-oriented rewriting rules that build derivations ultimately yielding ter-
minal strings, the whole system being interpreted as a constructive definition of
the set of all and only those strings that it could in principle construct. Chomsky
(1959) is generally taken to be the foundational work on this type of system.

The other emerged later and made much more hesitant progress. Its mathe-
matical foundations go back to a proposition which was proved independently
by several mathematicians (Medvedev 1956 [1964], Büchi 1960, Elgot 1961,
Trakhtenbrot 1962), but is most often called Büchi’s Theorem (Büchi, 1960).
It says a set of strings is finite-state if and only if it is the set of all finite string-
like models of a closed formula of weak monadic second-order logic. This
offers a new way of characterizing a set of strings: instead of asking what sort
of a rewriting system can generate all and only the members of a certain set,

†I am grateful to the organizers of the 2019 HPSG conference for inviting me to present a
paper, and especially to Gabriela Bı̂lbı̂ie for her brilliant local organization. I thank the attendees
for their questions and discussion. I owe a major debt to James Rogers, whose work is the source
of the observations in sections 4 and 5 of this paper. Conversations with Mark Steedman before
the conference were extremely useful to me, and after the conference I benefited from careful
successive critiques of several drafts by Bob Levine, Bob Borsley, and especially Stefan Müller.
They all helped me to correct serious errors I had made. The remaining faults and blunders are
solely mine.

59

ask what sort of logic can express a statement that is true of all and only the
sorts of things that are members of that set. Within theoretical computer sci-
ence it has led to significant results such as that existential second-order logic
characterizes stringsets recognizable in nondeterministic polynomial time (Fa-
gin, 1974), and has spawned new subdisciplines such as descriptive complexity
theory (Immerman, 1999).

Introducing the second kind of thinking into linguistics created model-
theoretic syntax (MTS), but progress toward accepting it has been anything
but straight and smooth. McCawley (1968) is widely thought to have presaged
it, but did not (see §3). Lakoff (1971) groped toward it but botched the job
(Soames, 1974). Kac (1978) clearly adumbrates it but has been overlooked.
Johnson & Postal (1980) makes the most serious attempt at it, but contradicts
itself with its misguided ideas (in Chapter 14) about formalizing transderiva-
tional constraints.

HPSG perhaps comes closer than any other framework to developing in
purely MTS mode, but even there the progress has been hesitant. HPSG grew
out of GPSG (Gazdar et al., 1985), which was developed as a kind of hybrid
theory, a generative grammar with filters. It was only in 1987 that Gerald Gaz-
dar realized that GPSG should have been conceptualized model-theoretically.
In unpublished lectures at the 1987 LSA Linguistic Institute he showed how
this could be done. By then Pollard and Sag had developed the first version of
HPSG (Pollard & Sag, 1987), very much within mainstream generative think-
ing. By 1994 Pollard and Sag were laying more stress on principles which
stated facts about about well-formed structures, but still employed ‘schemata’
written in the form ‘A → B C’ to outline the gross properties of syntactic con-
structions, and those are visibly like context-free (CF) rules. A formula like
‘Clause → NP VP’ (and it makes no difference if NP and VP are replaced
by complex AVMs) cannot be construed as a statement that is truth-evaluable
within the structure of a sentence.

By the second half of the 1990s, both Pollard and Sag had commenced
using the term ‘constraint-based grammar’ to characterize their approach, and
some have equated this with MTS. I do not favor this term, and try to explain
why in what follows. I then discuss some relevant results concerning subreg-
ular families of stringsets, which I then generalizes to trees. I conclude by
attempting to bring all this to bear on HPSG.

2 The ‘constraint-based’ label

The term ‘constraint-based grammar’ (henceforth CBG) figures prominently
in works like Pollard (1996) and the textbook by Ivan Sag et al. (Sag & Wa-
sow 1999; 2nd edition Sag et al. 2003). Müller (2019) takes it to be a syn-

60

onym for MTS, but it seems to me to have a mainly sociological import: the
crucial requirement for membership in the CBG community is not positing
transformations (hence not following Chomsky). The CBG membership roll
according to Sag & Wasow (1999) includes GPSG, HPSG, LFG, functional
unification grammar, dependency grammar, categorial grammar, construction
grammar, and the framework Sag was working on in his last years, sign-based
construction grammar (SBCG). Sag et al. (2003) adds brief sections on three
other syntactic theories which are claimed not to fit into the typology: rela-
tional grammar (RG), tree-adjoining grammar (TAG), and optimality theory
(OT). But this claim of failure to fit suggests incoherence in the typology.

RG uses no transformations and should surely be classed as CBG — its
more highly mathematicized descendant arc pair grammar (APG) is correctly
recognized by Sag et al. as ‘the first formalized constraint-based theory of
grammar to be developed’ (Sag et al. 2003: 539).

TAG, by contrast, is straightforward composition-oriented (bottom-up) gen-
erative grammar, analogous to categorial grammar but founded on trees rather
than strings, hence should surely be excluded (especially if the adjunction op-
eration is taken to be analogous to a generalized transformation, as seems to be
suggested by Chomsky 1993: 21).

And if OT is not based in constraints, no framework is: OT posits a univer-
sal set of constraints, different grammars being distinguished solely by different
orders of application priority, so why does it not fit the classification?

Further puzzlement arises when Culicover & Jackendoff (2005) classify
their work as CBG. They class categorial grammar and tree-adjoining grammar
with ‘mainstream generative grammar’ (which seems correct to me), but count
their ‘simpler syntax’ (along with LFG, HPSG, and Construction Grammar)
as CBG, despite indications that it employs generative components for each of
phonology, syntax, and semantics. They claim that in CBG theories:

Each constraint determines or licenses a small piece of linguis-
tic structure or a relation between two small pieces. A linguistic
structure is acceptable overall if it conforms to all applicable con-
straints. There is no logical ordering among constraints, so one can
use constraints to license or construct linguistic structures starting
at any point in the sentence: top-down, bottom-up, left-to-right, or
any combination thereof. Thus a constraint-based grammar readily
lends itself to interpretations in terms of performance. . .

Note the locutions ‘determines or licenses’ and ‘license or construct’. Which
is it? Constructing sentences? Licensing them as having been constructed cor-
rectly? Or stating conditions on the structure they are permitted to have?

In a footnote they suggest that CBG ‘was suggested as early as [McCawley
(1968)], who referred to “node admissibility conditions”; other terms for this

61

formulation are “declarative”, “representational”, and “model-theoretic”.’ This
embodies a confusion that is worth discussing in detail.

3 Node admissibility conditions

The novel interpretation of CF rules to which Culicover and Jackendoff allude
was suggested to James McCawley by Richard Stanley in 1965. The idea was to
reinterpret phrase structure rules as ‘node admissibility conditions’ (henceforth
NACs). This meant treating a CF rule ‘A → B C’ not as meaning ‘if the current
string has an A you may rewrite it with the A replaced by B C’, but rather as
meaning ‘a subtree consisting of an A-labeled node with a first child labeled
B and a second child labeled C is permissible’. Context-sensitive rules can
also be thus reinterpreted: ‘A → B C / D E’ would standardly be read as
‘if the current string has an A with a D preceding and an E following, you
may rewrite it with the A replaced by B C’; the new interpretation would be:
‘a node labeled A with a first child labeled B and a second child labeled C is
permissible if in the tree a D-node immediately precedes the replaced A and an
E-node immediately follows it’.

McCawley observed that for context-sensitive rules there was a difference
in expressive power between the two interpretations: he exhibited a tiny gram-
mar which under one interpretation generated a single tree and under the other
generated nothing. Clarifying this, a later mathematical result of Peters &
Ritchie (1969) showing that the NAC interpretation yielded only context-free
stringsets (CFLs). However, none of this has much to do with MTS. To start
with, ‘node admissibility condition’ (henceforth NAC) was always a misnomer.
NACs are not conditions on the admissibility of nodes or trees or anything else.
An NAC saying ‘A → B C’ doesn’t place any condition on nodes, not even on
nodes labeled A: it requires neither that a node labeled A should have the child
sequence B C (there could be another NAC saying A → D E F) and it doesn’t
require that a child sequence B C must have a parent node A (there could be
another NAC saying ‘D → B C’).

The Stanley/McCawley interpretation makes trees directly answerable to
the content of the grammar without the need for Chomsky’s procedure for con-
structing trees from the information in derivations, so the connection between
rules and structures becomes far more transparent. A grammar becomes in
effect a finite library of pictures of local regions of a tree, and a tree is well
formed iff every region of appropriate size matches one of the pictures (see
Rogers 1999, where CF grammars (CFGs) are introduced in this way). It was
part of what motivated Gerald Gazdar to reconsider the descriptive value of CF
rules.

But grammars under the Stanley/McCawley NAC interpretation are purely

62

generative grammars, though of the composition-oriented type first exhibited
in categorial grammar (Ajdukiewicz 1935). A grammar consists of some build-
ing blocks and a mode of composition for putting them together. The implicit
composition operation for NAC grammars is what I will call frontier nontermi-
nal substitution: wherever a frontier node in a developing tree is labeled with a
nonterminal symbol α you can plug in some local tree in the grammar that has
root node labeled α:

A A

B α α =⇒ B α

β γ β γ

The set of trees generated is the set of all and only those trees with a root label
S (or whatever root node label may be specified) and a frontier entirely labeled
by terminal symbols (lexical items). The strings generated are all and only the
frontiers of those trees.

Tree-adjoining grammar (TAG) also defines composition-oriented genera-
tive grammars, differing in that they feature a more complex kind of composi-
tion operation, based on auxiliary trees, which have a frontier nonterminal node
label matching the root node label. These provide for operations of what I will
call internal nonterminal substitution: a designated internal node labeled α is
replaced by an auxiliary tree that has α both as root label and a frontier label,
like this:

A A

B α α =⇒ B α

D E β γ β γ

α δ α δ

D E

Neither NAC grammars nor TAGs are anything like MTS. Notice that MTS
constraints express necessary conditions on expression structure, and well-
formedness is determined by satisfaction of all the constraints. But no node
can ever match more than one NAC, so there could never be a tree that satisfied
two or more NACs.

McCawley himself makes an error on this point, saying that ‘the admissi-
bility of a tree is defined in terms of the admissibility of all of its nodes, i.e., in
the form of a condition which has the form of a logical conjunction’ (p. 248).
It is in fact a disjunction. An NAC is a one-place predicate of nodes; for exam-

63

ple, the NAC corresponding to the rule ‘A → B C’, expressed as a property of
a node x, says ‘x is labeled A and has a left child labeled B and a right child
labeled C’. For generality, it will be convenient to add a trivial one-node NAC
of depth zero for each terminal symbol: the NAC ‘eat’ will correspond to the
statement ‘x is a node labeled eat’. One might want to stipulate that that a node
with no child (a node on the frontier, also known as a leaf) must be labeled with
a member of the terminal vocabulary (though that rules out some theories of
‘empty categories’), and perhaps also that a node that has no parent (the root) is
labeled with some designated symbol such as S or Clause; but these are matters
of detail. The main thing that has to be true in a tree to make it well-formed
according to a set ϕ1, . . . , ϕk of k NACs is the multiple disjunction shown in
(1).

(1) (∀x)[∨
1≤i≤k

ϕi(x)] ‘Every node satisfies the disjunction of all the

NACs.’

So NACs are in effect atomic propositions, each stating a sufficient condi-
tion for some specific local tree (of depth 0 or 1) to be a legitimate subpart of
a well-formed tree, and written in a way that is isomorphic to such a subpart.
The grammar is really just a finite list of local trees, generating all and only
the trees that are entirely composed of the local trees on the list and could be
constructed by combining them using frontier nonterminal substitution.

Stanley/McCawley CFG thus construed is a composition-oriented genera-
tive formalism employing a set of small building blocks and a set of operations
for putting them together to make larger units. In that respect, it is just like
categorial grammar, TAG, and Chomsky’s minimalism. However, it will be rel-
evant in the next section that there is a particularly easy way to turn a set of
NACs into a model-theoretic description that is in many respects equivalent. It
depends on the fact that there are only finitely many trees employing a given
finite vocabulary V of node labels and given finite bounds on depth (d) and
breadth (b). Hence for any finite subset of them interpreted as NACs we can
take the complement of that set (relative to all trees of depth ≤ d and width
≤ w labeled from V), and interpret each as a subtree prohibition. Each local
tree Ti in the complement set will be understood as the statement ϕi meaning
‘the configuration Ti does not occur as a subtree’. Then a tree T is well-formed
if and only if each ϕi is true in T .

To illustrate, consider this set of NACs constituting a tree-generating gram-
mar defining (in effect) a one-bar-level X-bar theory on binary trees with only
two lexical categories, A and B:

64

AP

A AP

AP

A BP

AP

AP A

AP

BP A

BP

AP B

BP

B AP

BP

B BP

BP

BP B

Now consider the complement set (which happens in this case to be exactly the
same size):

* AP

AP B

* AP

B AP

* AP

B BP

* AP

BP B

* BP

A AP

* BP

A BP

* BP

AP A

* BP

BP A

Making sure a tree does NOT contain any of the configurations in the second
set yields exactly the same results as making sure it IS entirely composed of the
local trees in the first set.

Now in the next section I want to begin to make clear the sense in which
this yields an MTS description, though one stated in an extremely primitive de-
scription language. Various results were achieved after 1968 seem in retrospect
highly relevant to clarifying this point. I will first review the results, and then,
returning to my theme, relate them to HPSG.

4 Expressive power of description languages for strings

It was noted in Rogers (1997) that stating a CFG as a set of local trees is strongly
analogous to a bigram description of a set of strings. A bigram description
over an alphabet Σ is a finite list of 2-symbol sequences over Σ, and a string
is grammatical according to it if every length-2 substring of the string (every
factor, as the formal language theorists put it) is on the list. And as I have
pointed out, using the complement of the set of bigrams instead permits the
description to be construed in MTS terms.

But bigram descriptions define only a very small and primitive class of
stringsets, the SL2 stringsets. Using depth-1 local trees as building blocks for
trees is analogous to using bigrams as building blocks for strings. When im-
plemented in detail it employs a finite vocabulary Σ plus an additional symbol
⋊ 6∈ Σ to mark of the beginning of a string and ⋉ 6∈ Σ to mark the end. A string
w is generated iff it begins with some symbol σ such that ⋊σ is one of the bi-
grams and it ends with some symbol σ such that ⋉σ is one of the bigrams,

65

and for every substring σ1σ2 the string σ1σ2 is one of the bigrams. Model-
theoretically, it amounts to using a description language of atomic propositions
interpreted as substring bans: a proposition ab means ‘the substring ab does not
occur’.

Letting k = 3 then yields the trigram stringsets, a proper superset; letting
k = 4 yields the quadrigram stringsets, larger still; and so on upward: n-gram
stringset for any for any positive integer n can be defined by letting k = n. So
there is an infinite hierarchy of strictly local (SL) stringsets.

If we add in the results of taking unions, intersections, and complements
of SL stringsets we get a strictly larger class known as the Locally Testable
stringsets (LT). And again, there is a class LT2 where the basis is SL2 stringsets,
a class LT3 where the basis is SL3 stringsets, and so on.

LT stringsets can be described model-theoretically by allowing not just
atomic propositions like σ1σ2 (meaning ‘the substring σ1σ2 does not occur’)
but also propositional calculus formulas which are conjunctions, disjunctions,
or negations of such propositions. Now you can say things like ‘either ab does
not occur or bc and cd do not both occur’, and so on. The class of stringsets de-
scribable is now larger, a proper superset of the SL stringsets known as the LT
stringsets. For a simple example of a stringset that is LT but not SL, consider
a∗ba∗. It contains all and only those strings over {a, b} that contain just a single
b, and it has no SLk description for any k. So the apparently very simple notion
‘contains a b’ is not expressible in a language as primitive as the language of
atomic propositions about n-gram presence or absence.

Allowing quantifiers adds considerably to expressive power. If we per-
mit first-order quantification and assume a binary relation symbol <1 intu-
itively meaning ‘immediately precedes’ (= ‘left-adjacent to’ = ‘predecessor of’)
we can describe a larger class of stringsets known as the (locally) Threshold
Testable (TT) sets (Thomas 1982: 372). This permits us to verify that a certain
substring occurs at least a certain number of times in each string, up to a fixed
threshold.

We can step up the expressive power yet more by choosing the binary rela-
tion ‘<∗

1’, the reflexive transitive closure of <1, interpretable as ‘precedes (not
necessarily immediately)’.1 We get a larger family of stringsets, also obtainable
by closing LT under union, intersection, complement, and concatenation, and
thus known as the ‘Locally Testable with Order’ class in McNaughton & Papert
(1971). But it is most commonly known under the name ‘Star-Free’ (SF), be-
cause the languages can be characterized by expressions very much like regular
expressions except that they use the complement operator instead of asteration
(Kleene star): every finite stringset is SF; every union of SF stringsets is SF;
every concatenation of SF stringsets is SF; the complement of any SF stringset

1The <1 relation is first-order definable from <∗
1, but not conversely.

66

is SF; and nothing else is.
An alternative characterization is as the class of non-counting stringsets,

within which beyond a certain finite limit k there is no further possibility of
counting whether there were k consecutive occurrences of some substring or
more than k, so that if uvkw is in a set uvk+1w is in as well.

An important result due to McNaughton & Papert (1971) shows that a lan-
guage is SF iff it is the set of all finite stringlike structures satisfying a closed
formula of first-order logic with ‘<∗

1’. This permits describing the set of all
strings over {a, b, c} satifying ∀x[c(x) ⇒ ∃y[b(y) ∧ y <∗

1 x]], in which any
occurrence of c has to co-occur with a b somewhere earlier in the string.

As a final step up in expressive power, if we replace first-order logic by
weak monadic second-order logic (wMSO), we have a theorem obtained in-
dependently by several researchers in the late 1950s (Medvedev 1956 [1964],
Büchi 1960, Elgot 1961): using wMSO on string-like models, the describable
stringsets are an even larger class, namely the regular (finite-state) stringsets.

Thus we have this tableau of progressively larger and larger families of
stringsets:

(2) a. Strictly Local SL (finite n-gram lists); SL2, SL3, SL4, . . . SLk

b. Locally Testable LT (closure of SL under boolean connectives);
LT2, LT3, LT4, . . . LTk

c. Threshold Testable TT (first-order logic with <1); TT2, TT3,
TT4, . . . TTk

d. Star-Free SF (star-free expressions; counter-free automata; FO
with <∗)

e. Finite-State FS (regular expressions or grammars; finite automata;
wMSO)

And they form a hierarchy (actually a hierarchy of hierarchies, because there
are SL3 stringsets that are not SL2, LT5 stringsets that are not LT4, and so on).

(3) SL (LT (TT (SF (FS

5 Expressive power of description languages for trees

The relevance of this material on the formal language theory of subregular
stringsets (see Rogers & Pullum 2011 for more) will become clearer once we
generalize to trees. The analog of n-grams are trees of depth n + 1 (where an
isolated node has depth 0). Under the reformalization discussed above, a CFG
can be given as simply a finite set of local trees, i.e. trees of depth 1. These cor-
respond to bigrams: in the linear precedence dimension a bigram has a length

67

of two; a local tree has a corresponding measurement in the dominance dimen-
sion, from the root level to the child level. Just as you can decompose strings
into the bigrams they contain, you can decompose a tree into the local trees it
contains. There is an overlap of one symbol in each case. The string abba is
made up of the bigrams ab, bb, and ba. In an analogous way, he tree in (4a) is
made up of the local trees (4b) and (4c).

(4) a. A b. A c. C

B C B C D E

D E

Adding a superscript τ to remind us that we are now talking about tree-sets
rather than stringsets, the family of all tree-sets we can define using local trees
as building blocks can be called the SLτ

2 tree-sets. But as with the stringset
families SL2, SL3, and so on, we can use trees of greater and greater depth as
building blocks to get an infinite hierarchy of larger and larger families SLτ

2 (the
2-local tree-sets), SLτ

3 (the 3-local tree-sets), and so on for all positive n ≥ 2.
But there will be sets of trees we cannot describe with local trees of any

finite maximum depth. Consider, for example, the set of binary trees in which
most nodes are labeled α but there is at least one node somewhere that is la-
beled β, with α above and below it. This cannot be SLτ

k for any k: no matter
how large k is (i.e., no matter how deep the building-block trees are), a tree
with no β will be indistinguishable from one containing a β more than k nodes
above or below the bit you’re currently checking.

I am simply using a tree analog of a simple theorem about SL string lan-
guages here. In an SL string language, a property that we could call Prefix-
Blind Suffixing always holds, and the converse is also true. In a strictly k-local
stringset (SLk for some k ≥ 2), given a string x of length k − 1, if wxy and
vxz are both in the set, then wxz has to be in the set. The occurrence of the
suffix z cannot depend on anything before the x, because the x is too long.

The tree analog is that in a strictly k-local tree-set, once a tree contains a
subtree T of depth k− 1, the well-formedness of a tree formed by adding some
further subtree below it (closer to the frontier) cannot depend on what occurs
above it (closer to the root).

We can develop a more powerful description language by analogy with the
LT string languages. Instead of just providing a list of depth-k trees as our
grammar, we can close the defined sets under boolean operations by allowing
grammars to say things like ‘either T1 does not occur or T2 and T3 do not both
occur’, and so on. This permits us to define for each k the tree-sets that are
k-locally testable, which we can call LTτ

k.

68

The family of LTτ
k tree-sets is rich enough to contain the set of all and only

those binary-branching trees in which there is at least one node labeled β, but
every β has alpha nodes both immediately above it and immediately below it.
This is the intersection of three obviously SLτ

2 tree-sets: (i) the trees which have
α as the root label and all the frontier labels, (ii) the trees which do not contain
any cases of a β node with a β-labeled child, and (iii) the trees in which there
is an α-labeled node with a β-labeled child. That proves it is LTτ

2 , because the
LTτ

k tree-sets can be described by propositional calculus formulas in which the
primitive propositions say things like ‘k-depth subtree T does not occur’. The
set just mentioned is describable by the conjunction of three SLτ

2 descriptions
couched in terms of primitive propositions.

We can make a yet more powerful description language by allowing our-
selves first-order quantification over nodes in a language containing a binary
relation symbol <2 to denote ‘immediately dominates’. I will call this descrip-
tion language FO<2 . This gives us a still larger family, TTτ

k, the tree analog
of the k-locally threshold testable stringsets. With this as our description lan-
guage, we finally have enough expressive power to describe the set of all trees
in which all nodes are labeled α except for a unique β-labeled node which has
α-labeled nodes both above it (its parent) and below it (all of its children).

We will use x <2 y) for ‘x immediately dominates y’. Let ‘ROOT(x)’
(meaning intuitively that x is the root of the tree) be defined by ‘¬(∃y)[y <2

x]’ (which says that nothing immediately dominates x). Define ‘LEAF(x)’
(meaning that x is on the frontier of the tree) by ‘¬(∃y)[x <2 y]’ (which says
that x does not immediately dominate anything). And define ‘BINARY(x)’
(meaning that x is a node with exactly two children) by this formula:

(5) (∃y, z)[x <2 y ∧ x <2 z ∧ y 6= z ∧ (∀u)[x <2 u ⇒ (u = y ∨ u = z)]]

‘The node x has exactly two distinct children.’

Then the set of all purely binary-branching trees is the set in which BINARY-
ONLY is true:

(6) BINARYONLY ≡def (∀x)[ROOT(x) ∨ LEAF(x) ∨ BINARY(x)]

‘Every node is either the root, or a leaf, or binary-branching.’

Let LONELYBETA be the proposition that all nodes are labeled α except for a
unique node labeled β like this:

(7) LONELYBETA ≡def (∃x)[β(x) ∧ (∀y)[(β(y) ⇒ (y = x)) ∧
(¬β(y) ⇒ α(y))]]

‘There is an x that is labeled β, and x is the only node labeled β (i.e.,
any y labeled β is identical with x), and any other node (i.e., any y not
labeled β) is labeled α.’

69

Now the set we want is the set satisfying the conjunction of BINARYONLY and
LONELYBETA.

A further increase in expressive power can be obtained (though to save
space I won’t illustrate) if we move to a language in which the relation <2 is
replaced by its reflexive and transitive closure <∗

2, so that we can say ‘domi-
nates’ as well as ‘immediately dominates’.

And we have still not reached maximum expressive power for languages
describing tree-sets. It would still not be possible to describe a set of trees in
which, for some fixed k, the depth in terms of k-depth subtrees is always an
even number. To achieve that, we could move from first-order logic to wMSO,
which is capable of describing such sets. It was proved in the 1960s (Thatcher
1967, Thatcher & Wright 1968) that a set of trees is recognizable by a finite-
state tree automaton if and only if its string yield is a CFL, and by a fundamen-
tal result of Doner (1970), wMSO on finite trees yields exactly the expressive
power of finite-state tree automata.

McCawley did not know about Doner’s result, and may not have known
Thatcher and Wright’s work, but he did recognize that the string yield of a tree-
set defined by NACs (i.e., defined using SLτ

2) is always a CFL. This insight
influenced Gerald Gazdar in devising what came to be known as generalized
phrase structure grammar in 1978–1979. I think it influenced the creators of its
direct heir HPSG as well. But it is natural to ask what sorts of stringset you
can define by using more powerful description languages. And considering
the string yields of the larger and larger tree-sets describable with the analogs
of the more and more powerful description languages just briefly reviewed re-
veals something rather amazing — though the proofs are straightforward, some
covered in textbooks like Libkin (2004) and others just basically trusted math-
ematical folklore:

(8) TYPE OF TREE-SET DEFINITION STRINGSET YIELD

strictly 2-local (local trees ≡ NACs) context-free
strictly 3-local (depth-2 trees) context-free
strictly k-local (depth-k − 1 trees, k > 3) context-free
context-sensitive 2-local NACs context-free
locally k-testable, k ≥ 2 context-free
first-order logic with <2 context-free
first-order logic with <∗

2 context-free
weak monadic second-order logic (wMSO) context-free

We seem to have reached a plateau: no matter what description language
you choose, from strictly 2-local all the way up to wMSO, you just get the
CFLs over and over again.

Notice that the third line in this table tells us that no matter what the size of
your tree-like building blocks, if you close the set of building blocks under the

70

plugging-in that I earlier called frontier nonterminal substitution, you get a set
of trees that has a CFL as its string yield. Thus the data-oriented parsing pro-
posed by Remko Scha and others, and developed in Bod (1998), where in effect
the grammar is simply a (statistically annotated) treebank — a set containing
all of some set of trees plus all of their subtrees — can only yield CFLs.

I should make it clear that this does not mean that MTS is doomed to re-
main within the context-free realm. James Rogers (2003) realized that if you
settle on wMSO as your description language, you can define a hierarchy of
classes of structures of increasing complexity that has a hierarchy of classes of
strings going along with it, the classes of structures being differentiated by their
number of dimensions. A sentence considered as an unanalyzable unit has zero
dimensions. A string has one dimension, hence only one way in which two
nodes can be adjacent, the one called linear precedence, denoted by ≤1. A tree
has two. One is ≤1. The other, denoted by ≤2, allows a node to be adjacent
to an entire 1-dimensional string (its children). Tree-like objects with three di-
mensions can be defined by adding a third relation, ≤3, in terms of which a
single node can be adjacent to an entire 2-dimensional tree. And so on upward.
Rogers proved that the following holds:

(9) Stringset classes definable by wMSO on models fo various dimensions
NUMBER OF TYPE OF RESULTING STRINGSET PROOF

DIMENSIONS MODELS YIELD CLASS

0 points finite stringsets (obvious)
1 strings regular stringsets (Büchi 1960)
2 trees context-free stringsets (Doner 1970)
3 3-d trees tree-adjoining stringsets (Rogers 2003)
4 4-d trees (no name for the class) (Rogers 2004)

· · · · · · · · · · · ·

The hierarchy continues without bound — though there is currently no termi-
nology for the stringset yields of wMSO-characterizable sets of singly-rooted
tree-like models of 4 dimensions, 5 dimensions, etc. Furthermore, it has been
proved by Jens Michaelis that the infinite union of all the stringset classes in the
Rogers hierarchy is the one characterized by minimalist grammars as formal-
ized by Stabler (see Stabler, Jr. 1997, Michaelis 2001). In other words, mini-
malist grammars in Stabler’s sense are the stringsets that are the string yields
of model classes wMSO-characterizable sets of singly-rooted tree-like graph
models of arbitrary finite dimensionality (and thus, surely, far more expressive
than will be needed for describing human languages).

71

6 Expressive power of HPSG

Bringing this back to the issue of HPSG is made more difficult by the curious
state of the current literature. The standard works introducing the basics of
HPSG contain no discussion of phrasal reduplication (as has been claimed to
exist in some African languages) or the sort of cross-serial dependencies found
in certain subordinate clause constructions of Dutch and Züritüütsch (Zurich
Swiss German). Züritüütsch is particularly important because the varying case
marking governed by different verbs yields an argument that its stringset cannot
be a CFL (Shieber, 1985). Yet Swiss German does not figure in Pollard & Sag
(1994), or in any of the basic pedagogical works such as Sag & Wasow (1999),
Sag et al. (2003), or Levine (2017).

A number of more technical works — more than I have space to review or
even list here — do cover ways of giving HPSG accounts of non-CF phenomena
of the sort Swiss German exemplifies. Reape (1992) is perhaps the most influ-
ential, but see Müller (2019), Chapter 9, for pointers to the rest of the literature.
A variety of different techniques are involved: re-entrancy (structure sharing)
is one; relational constraints of arbitrary power are sometimes alluded to; and
what is particularly important is argument merger, allowing the list-valued va-
lence feature COMPS to gather up arguments of a subordinate constituent and
then break up the list to permit checking off its members in some desired se-
quence. This looks as if it has the power to use the COMPS as a queue rather
than a stack, which immediately provides for greater than CFG power.

I do not think there is any unitary answer to the question of what gener-
ative power results from the different uses of these mechanisms that various
linguists make. Some versions of HPSG may be limited to the weak generative
capacity of combinatory categorial grammar (Steedman, 2000); some probably
have Turing-machine power. I confess to not having enough understanding of
the voluminous literature to adjudicate on such matters; it seems to me that
there is much scope for mathematical linguists to do some focused work on the
weak generative capacity of HPSG in various forms, and the ways in which the
various mechanisms contribute.

Such issues are important. Consider, for example, what was discovered
after Richter (2000) developed a language named RSRL explicitly for stating
constraints of the sort presupposed by Pollard & Sag (1994). RSRL turned out
to be so expressive that even its finite model checking problem is undecidable
(Kepser, 2004). In other words, full HPSG structures can be so complex, and
queries expressed in RSRL can be so rich, that the task of determining what fi-
nite structures are compliant with a given RSRL constraint can lose its way as if
it were being evaluated in an infinite structure, with the result that no algorithm
can guarantee to determine in finite time whether a given arbitrary structure

72

is grammatical according to a given arbitrary RSRL-expressed grammar. This
result alone tells us, of course, that RSRL on HPSG structures is vastly more
complex than wMSO on trees (which guarantees decidability not just for finite
model-checking but also for satisfiability).

The only point I want to contribute here has to do with unbounded de-
pendencies. Given that description languages of significantly more expressive
power than strictly local ones are available for HPSG structures and have been
explored, it is a curious fact that Pollard & Sag (1994) develop their analysis of
unbounded dependencies using the SLASH feature inherited from GPSG. The
SLASH mechanism, we can now see (though this was not clear to the develop-
ers of GPSG in 1980), is a way of sticking to SLτ

2 descriptions, or equivalently,
modifying the nonterminal vocabulary so that simple unmodified CFGs can
describe unbounded dependencies.

This seems odd to me. It is as if Pollard and Sag were following Gazdar
(1981) in assuming that their description had to be couched in the most prim-
itive description language possible, namely SLτ

2 . Gazdar’s breakthrough ob-
servation about unbounded dependencies was that it only takes adding a finite
number of slashed categories to the inventory (upper-bounded by the square
of the number of full phrasal categories, since they are the ones that can be
‘extracted’) to cope with unbounded dependencies and island constraints using
strictly 2-local tree description (i.e., Stanley/McCawley NACs). Pollard & Sag
(1994) follows Gazdar point for point on the general theory, developing differ-
ent analyses where the syntactic phenomena call for it but always assuming the
basic 2-local-equivalent technology that Gazdar developed.

Pollard & Sag (1994) employ the full redundancy of Gazdar’s system. Take
the very simple case of ‘topicalization’ (unbounded complement preposing) as
treated in their Chapter 4. The tree in their (18) on page 165 has (when the Non-
local Feature Principle on p. 400 is consulted to flesh it out) ‘SYNSEM|NON-
LOCAL|INHER|SLASH { }’ on the root of the entire sentence; ‘SYNSEM|NON-
LOCAL|TO-BIND|SLASH { 1 }’ on the root of the topicalization construction;
the same thing on the trace; and ‘SYNSEM|NONLOCAL|INHER|SLASH { 1 }’
on each of the eight head nodes in between them.

In addition, trace nodes have to have full details of the INHER and TO-BIND

values of SLASH (and QUE and REL); there is a complex specification of the in-
ternal feature structure of a trace; there is a ‘Nonlocal Feature Principle’, given
in only the most casually informal terms on p. 164 (I quote the different version
on p. 400) saying that ‘For each nonlocal feature, the value of SYNSEM|NON-
LOCAL|INHERITED|SLASH on the mother is the set difference of the union of
the values on all the daughters and the value of SYNSEM|NONLOCAL|TO-BIND|
SLASH on the head daughter’; and (fn. 5, p. 164) all other ID schemata intro-
ducing phrasal heads have to be modified to include ‘[TO-BIND|SLASH { }]’ on

73

the head daughter. All of this highly redundant feature annotation is employed
simply to guarantee that there has to be a trace in the clause that accompanies
a preposed complement.

If instead we do not (implicitly) restrict ourselves to SLτ
2 rules, but allow

the power of (say) first-order logic in our description language for trees, we can
easily guarantee the presence of a ‘trace’ in some subconstituent accompanying
a dislocated element, without using GPSG-style paths of slashed categories.

For simplicity, let me assume with Huddleston et al. (2002) (henceforth
CGEL) that preposed (‘topicalized’) complements are distinguished by bearing
the grammatical relation ‘Prenucleus’ in the main clause, and every Prenucleus
phrase is accompanied by a following phrasal head bearing the relation Nucleus
(which is really just a special case of the head relation). We can give a simple
direct statement of the fact that the head clause accompanying a Prenucleus NP
must contain an NP trace. I represent grammatical relations top-down to match
dominance, so ‘x <∗

2 y)’ means ‘x dominates y’ and ‘Prenucleus(x, y)’ means
‘x has a child y bearing the Prenucleus relation to it’. Here is the statement we
need:

(10) (∀x, y)[(Prenucleus(x, y) ∧ NP(y)) ⇒
(∃z)[Nucleus(x, z) ∧ (∃t)[(z >∗

2 t) ∧ Trace(t) ∧ NP(t)]]]

‘If x has an NP child y in Prenucleus function, then x also has a child z
in Nucleus (= head) function and z contains an NP trace.’

This shows that we do not need SLASH to guarantee that a clause accom-
panying a Prenucleus (‘extracted’) constituent must contain a trace, even in an
entirely CF-restricted descriptive system like using first-order logic on labeled
trees.

Various constructions with non-subject gaps (such as the so-called ‘tough-
movement’ construction) can be described in a similar way, though they do not
call for a Prenucleus constituent; instead they involve a complement specifically
required to contain an NP gap. That is, the complement is required to be rooted
at a node z such that (∃t)[(z >∗

2 t) ∧ Trace(t) ∧ NP(t)] (see the discussion of
‘hollow VP’ complements in CGEL, 1245–1251, for an informal survey of the
several constructions at issue).

The foregoing remarks should not be taken as an argument that we should
describe unbounded dependencies without the now familiar GPSG-style chains
of nodes bearing SLASH values. I am only pointing out that it could easily be
done, using a description language that is not very rich, and has a decidable
satisfiability problem.

It will take more work before we can decide whether SLASH as used in Pol-
lard & Sag (1994) is a valuable idea in the HPSG context or or an unnecessary
hold-over from GPSG. The most interesting phenomena to study in this con-

74

text might be the binding domain phenomena discussed by Zaenen (1983) —
syntactic phenomena in various languages that are encountered only between a
left-extracted constituent and the gap in subordinate structure associated with
it. Zaenen posits a feature [bnd] present on every node along the spine between
the two constituents, just where Gazdar’s work had posited a category with a
SLASH value. Could these phenomena be insightfully described in a way that
involves no SLASH or BND features? We do not know, because the unacknowl-
edged bias toward strictly local treatments of phrase structure has meant that
linguists have not been asking that question during the last four decades. It
might be interesting to reopen the questions raised by the data that Zaenen con-
sidered.

References

Ajdukiewicz, Kazimierz. 1935. Die syntaktische Konnexität. Studia Philo-
sophica 1. 1–27. English translation published in Storrs McCall (ed.), Polish
Logic 1920–1939, 207–231, Oxford University Press.

Bod, Rens. 1998. Beyond grammar: An experience-based theory of language.
Stanford, CA: CSLI Publications.

Büchi, J. Richard. 1960. Weak second-order arithmetic and finite automata.
Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 6. 66–
92.

Chomsky, Noam. 1959. On certain formal properties of grammars. Informa-
tion and Control 2(2). 137–167. Reprinted in Readings in Mathematical
Psychology, Volume II, ed. by R. Duncan Luce, Robert R. Bush, and Eugene
Galanter, 125–155, New York: John Wiley & Sons, 1965 (citation to the
original on p. 125 of this reprinting is incorrect).

Chomsky, Noam. 1993. A minimalist program for linguistic theory. In Ken-
neth Hale & Samuel Jay Keyser (eds.), The view from Building 20, 1–52.
Cambridge, Massachusetts: MIT Press.

Culicover, Peter W. & Ray S. Jackendoff. 2005. Simpler syntax. Oxford: Ox-
ford University Press.

Doner, John. 1970. Tree acceptors and some of their applications. Journal of
Computer and System Sciences 4. 406–451.

Elgot, Calvin C. 1961. Decision problems of finite automata and related arith-
metics. Transactions of the American Mathematical Society 98. 21–51.

Fagin, Ronald. 1974. Generalized first-order spectra and polynomial-time rec-
ognizable sets. In Complexity of computation: SIAM-AMS proceedings,
vol. 7, 43–73. American Mathematical Society.

75

Gazdar, Gerald. 1981. Unbounded dependencies and coordinate structure. Lin-
guistic Inquiry 12. 155–184.

Gazdar, Gerald, Ewan Klein, Geoffrey K. Pullum & Ivan A. Sag. 1985. Gener-
alized phrase structure grammar. Oxford: Basil Blackwell.

Huddleston, Rodney, Geoffrey K. Pullum et al. 2002. The Cambridge grammar
of the English language. Cambridge: Cambridge University Press.

Immerman, Neil. 1999. Descriptive complexity. New York: Springer.
Johnson, David E. & Paul M. Postal. 1980. Arc pair grammar. Princeton, NJ:

Princeton University Press.
Kac, Michael B. 1978. Corepresentation of grammatical structure. London:

Croom Helm.
Kepser, Stephan. 2004. On the complexity of RSRL. Electronic Notes

in Theoretical Computer Science (ENTCS) 53. 146–162. In Proceed-
ings of the Joint Meeting of the 6th Conference on Formal Gram-
mar and the 7th Conference on Mathematics of Language; online at
http://dx.doi.org/10.1016/S1571-0661(05)82580-0.

Lakoff, George. 1971. On generative semantics. In Danny D. Steinberg &
Leon A. Jakobovitz (eds.), Semantics: An interdisciplinary reader in philos-
ophy, linguistics and psychology, 232–296. Cambridge: Cambridge Univer-
sity Press.

Levine, Robert D. 2017. Syntactic analysis: An HPSG-based approach. Cam-
bridge: Cambridge University Press.

Libkin, Leonid. 2004. Elements of finite model theory Texts in Theoretical
Computer Science. Springer.

McCawley, James D. 1968. Concerning the base component of a transforma-
tional grammar. Foundations of Language 4. 243–269. Reprinted in James
D. McCawley, Grammar and Meaning, 35–58 (New York: Academic Press;
Tokyo: Taishukan, 1973).

McNaughton, Robert & Seymour Papert. 1971. Counter-free automata. Cam-
bridge, MA: MIT Press.

Medvedev, Yu. T. 1956 [1964]. On the class of events representable in a finite
automaton. In Edward F. Moore (ed.), Sequential machines: Selected papers,
vol. II, 215–227. Reading, MA: Addison-Wesley. Originally published in
Russian in Avtomaty (1956), 385–401.

Michaelis, Jens. 2001. Transforming linear context-free rewriting systems into
minimalist grammars. In Philippe de Groote, Glyn Morrill & Christian Re-
toré (eds.), Logical Aspects of Computational Linguistics: 4th international
conference (Lecture Notes in Artificial Intelligence 2099), 228–244. Berlin
and New York: Springer.

76

Müller, Stefan. 2019. Grammatical theory: From transformational grammar
to constraint-based approaches. Berlin: Language Science Press 3rd edn.

Peters, P. Stanley & Robert W. Ritchie. 1969. Context-sensitive immediate con-
stituent analysis — context-free languages revisited. In Proceedings of the
ACM conference on the theory of computing, 1–8. Republished in Mathe-
matical Systems Theory 6 (1973), 324-333.

Pollard, Carl J. 1996. The nature of constraint-based grammar. Presented at Pa-
cific Asia Conference on Language, Information, and Computation, Kyung
Hee University, Seoul, Korea, December 20. Plain text draft available online
at http://lingo.stanford.edu/sag/L221a/pollard-96.txt.

Pollard, Carl J. & Ivan A. Sag. 1987. Information-based syntax and semantics,
volume 1: Fundamentals. Stanford, CA: CSLI Publications.

Pollard, Carl J. & Ivan A. Sag. 1994. Head-driven Phrase Structure Grammar.
Stanford, CA: CSLI Publications.

Reape, Mike. 1992. A formal theory of word order: A case study in West
Germanic. Edinburgh, UK: University of Edinburgh dissertation.

Richter, Frank. 2000. A mathematical formalism for linguistic theories with
an application in Head-driven Phrase Structure Grammar. Tübingen, Ger-
many: Universität Tübingen dissertation.

Rogers, James. 1997. Strict LT2 : Regular :: Local : Recognizable. In Chris-
tian Retoré (ed.), Logical Aspects of Computational Linguistics: First inter-
national conference, LACL ’96 (selected papers) (Lecture Notes in Artificial
Intelligence 1328), 366–385. Berlin and New York: Springer.

Rogers, James. 1999. The descriptive complexity of generalized local sets.
In Hans-Peter Kolb & Uwe Mönnich (eds.), The mathematics of syntactic
structure: Trees and their logics (Studies in Generative Grammar 44), 21–
40. Berlin: Mouton de Gruyter.

Rogers, James. 2003. wMSO theories as grammar formalisms. Theoretical
Computer Science 293. 291–320.

Rogers, James. 2004. Wrapping of trees. In Donia Scott (ed.), Pro-
ceedings of the 42nd annual meeting of the association for computa-
tional linguistics, Morristown, NJ: Association for Computational Lin-
guistics. Article no. 558, doi 10.3115/1218955.1219026; online at
http://portal.acm.org/citation.cfm?id=1219026#.

Rogers, James & Geoffrey K. Pullum. 2011. Aural pattern recognition ex-
periments and the subregular hierarchy. Journal of Logic, Language and
Information 20. 329–342.

Sag, Ivan A. & Thomas Wasow. 1999. Syntactic theory: A formal introduction.
Stanford, CA: CSLI Publications 1st edn.

77

Sag, Ivan A., Thomas Wasow & Emily M. Bender. 2003. Syntactic theory: A
formal introduction. Stanford, CA: CSLI Publications 2nd edn.

Shieber, Stuart. 1985. Evidence against the context-freeness of human lan-
guage. Linguistics and Philosophy 8. 333–343.

Soames, Scott. 1974. Rule orderings, obligatory transformations, and deriva-
tional constraints. Theoretical Linguistics 1. 116–138.

Stabler, Jr., Edward P. 1997. Derivational minimalism. In Christian Retoré
(ed.), Logical Aspects of Computational Linguistics, LACL ’96 (Lecture
Notes in Artificial Intelligence 1328), 68–95. Berlin: Springer Verlag.

Steedman, Mark. 2000. The syntactic process. Cambridge, MA: MIT Press.
Thatcher, James W. 1967. Characterizing derivation trees of context-free gram-

mars through a generalization of finite automata theory. Journal of Computer
and System Sciences 1. 317–322.

Thatcher, James W. & J. B. Wright. 1968. Generalized finite automata theory
with an application to a decision problem of second-order logic. Mathemat-
ical Systems Theory 2(1). 57–81.

Thomas, Wolfgang. 1982. Classifying regular events in symbolic logic. Journal
of Computer and Systems Sciences 25. 360–376.

Trakhtenbrot, Boris A. 1962. Finite automata and monadic second order logic.
Sibirskii Matematicheskii Zhurnal 3. 101–131. In Russian; English transla-
tion in AMS Translations 59:23–55, 1966.

Zaenen, Annie. 1983. On syntactic binding. Linguistic Inquiry 14. 469–504.

78

