
Multiple question fronting without
relational constraints: An analysis of
Russian as a basis for cross-linguistic

modeling

Olga Zamaraeva
University of Washington

Guy Emerson
University of Cambridge

Proceedings of the 27th International Conference on
Head-Driven Phrase Structure Grammar

Online (Berlin/Seattle)

Stefan Müller, Anke Holler (Editors)

2020

Stanford, CA: CSLI Publications

pages 157–177

Keywords: HPSG, interrogatives, wh-questions, Russian, Grammar Matrix, multi-
ple fronting, DELPH-IN, difference lists, append lists, lists

Zamaraeva, Olga & Guy Emerson. 2020. Multiple question fronting without re-
lational constraints: An analysis of Russian as a basis for cross-linguistic model-
ing. In Stefan Müller & Anke Holler (eds.), Proceedings of the 27th International
Conference on Head-Driven Phrase Structure Grammar, Online (Berlin/Seattle),
157–177. Stanford, CA: CSLI Publications. DOI: 10.21248/hpsg.2020.9.

https://orcid.org/0000-0001-9969-058X
https://orcid.org/0000-0002-3136-9682
http://doi.org/10.21248/hpsg.2020.9
http://creativecommons.org/licenses/by/4.0/

Abstract

We present an analysis of multiple question fronting in a restricted vari-
ant of the HPSG formalism (DELPH-IN) where unification is the only na-
tively defined operation. Analysing multiple fronting in this formalism is
challenging, because it requires carefully handling list appends, something
that HPSG analyses of question fronting heavily rely on. Our analysis uses
the append list type to address this challenge. We focus the testing of our
analysis on Russian, although we also integrate it into the Grammar Matrix
customization system where it serves as a basis for cross-linguistic modeling.
In this context, we discuss the relationship of our analysis to lexical thread-
ing and conclude that, while lexical threading has its advantages, modeling
multiple extraction cross-linguistically is easier without the lexical threading
assumption.

1 Introduction

We present an analysis of multiple constituent question fronting in HPSG. We
take prototypical constituent (aka wh-) questions to be a conventional and direct
way of asking for information (Idiatov, 2007, p.6):

(1) Who arrived? [eng]
(2) Who saw what? [eng]
(3) Who do you think arrived?

[eng]

(4) Kto
who.nom

chto
what.acc

videl?
see.pst.3sg
‘Who saw what?’ [rus]1

Constituent questions are a case of long distance dependency constructions (LDD)
meaning that the question phrase can appear outside of the boundary of the clause
to which it belongs (3).

Languages differ with respect to how many question phrases can front. Fa-
mously in Slavic languages, all question phrases may be fronted (4). Our goal
is to systematically account for the data, presented in §2, where question words,
one or more, may appear at the left edge of the clause. We do so by developing
a Russian grammar fragment and integrating it into a cross-linguistic grammar
engineering framework, the Grammar Matrix (Bender et al., 2002, 2010).

Our work is couched within the DELPH-IN joint reference formalism (JRF;
Copestake, 2002a, p.227), a restrictive variant of HPSG developed to balance ex-
pressivity with computational efficiency. It does not allow relational constraints
which stipulate the value of one feature to be some function of the value of one or
more others (other than strict identity). Examples of relational constraints in other
variants of HPSG include e.g. shuffle operators (Reape, 1994, p.271). The formal-
ism furthermore requires that the number and order of daughters of each phrase

1Unless stated otherwise, the examples are constructed by the first author whose native language
is Russian. The second author, a native speaker of English, vetted the English examples.

158

structure rule be fixed in the definition of the rule, precluding systems that sepa-
rate immediate dominance from linear precedence (e.g. Engelkamp et al., 1992;
Kathol, 1995). Thus, our analysis builds on Pollard & Sag 1994 and Ginzburg
& Sag 2000 and exists in parallel with linearization-based accounts of multiple
fronting such as Penn 1998.

The analysis is part of a larger project (Zamaraeva, forth) the goal of which
is to add cross-linguistic support for constituent questions to the Grammar Matrix
system (Bender et al., 2002, 2010). The system includes a questionnaire that elic-
its typological and lexical information about a language from a linguist-user and
a back-end logic that customizes the Matrix core grammar types according to the
elicited specifications. In addition to facilitating the development of grammars for
practical applications, the system also can be used in linguistic hypothesis testing
(Bierwisch 1963, p.163, Müller 1999, p.439, Bender et al. 2008; Fokkens 2014;
Müller 2015). The resulting grammar fragments are suitable for both parsing and
generation and map between surface strings and Minimal Recursion Semantics
(MRS; Copestake et al., 2005) representations paired with HPSG feature struc-
tures. Integrating an analysis of question fronting into the system extends (i) the
platform itself, so that other phenomena (such as relative clauses) can be modeled
on top of and in interaction with our analysis; and (ii) the range of hypotheses
which can be rigorously tested with the system, such as various combinations of
single/multiple and optional/obligatory fronting. We present an analysis of multi-
ple question fronting which represents a hypothesis that data such as Russian can
be accounted for with multiple application of the filler-gap rule, without natively
defined relational constraints.

One analysis that the Grammar Matrix has historically relied upon is lexical
threading, a concept adapted from Bouma et al. 2001. Lexical threading posits that
the length of and the order of elements on the slash list (a representation of the
gaps in the sentence) is determined at the level of the lexical entry. This allows for
an elegant analysis of the English easy-adjectives, in particular (Flickinger, 2000).
However, we find that overall it complicates the analysis of multiple extraction in
languages with flexible word order, particularly in interaction with other phenom-
ena such as coordination. In this paper, we offer two alternatives for an analysis
of multiple question fronting: with and without lexical threading. Current work
has led to abandoning lexical threading assumptions in the Matrix in favor of a
more readily cross-linguistic analysis without it.

The details on the DELPH-IN framework which will be helpful to understand
our analysis constitute §3. In particular, we dedicate ample space to the append-
list type, since, at the time of writing, the existing exposition of append lists is
dense. Related work is summarized in §4. Two alternative analyses to account
for the data in §2 are presented in §5. We explain how we tested the analyses in
§6 and conclude with some thoughts on future work in §7.

159

2 Data: Multiple question fronting in Russian

Russian exhibits multiple question fronting (5), including in LDD constructions (6),
although LDD wh-questions may be infrequent.2 Multiple adjunct fronting ap-
pears either impossible (7) or rare, (8) being the only example we have found
so far in the Russian National Corpus. Finally, fronting appears optional (9) and
adjuncts can appear in any position with respect to the arguments (5), (10)–(11).
(5) Kogda

when
kto
who.nom

kogo
who.acc

videl?
see.pst

‘When did which person saw which other person?’ [rus]
(6) Kogda

when
kto
who.nom

kogo
who.acc

ty
2sg

tochno
for.sure

znaesh
know

(chto)
(that)

videl?
see.pst

‘When do you know for sure who saw whom?’ (‘What are the sets of
times and persons such that one person saw another at a certain time, such
that you know this set of facts for sure?’) [rus]

(7) ??Kogda
when

gde
where

my
1pl.nom

kupili
buy.past.1pl

eti
this.pl.acc

knigi?
book.pl.acc

Intended: ‘When [and] where did we buy these books?’
(8) DP. ru

DP. ru
vypustilo
publish.past

infografiku
infographic.acc

obo
of

vseh
all.prep

kvartirah
apartment.prep

Dostoevskogo
Dostoyevsky.gen

(gde
(where

kogda
when

zhil,
live.past,

gde
where

chto
what

napisal)
write.past)

‘DP.ru published an infographic about all Dostoevsky’s apartments (where
he lived when, where he wrote what) [rus] (Oborin, 1987, RNC)

(9) Ty
2sg

gde
where

rabotaesh?
work.2sg

‘Where do you work?’ [rus]3
(10) Kto

who.nom
kogo
who.acc

kogda
when

videl?
see.pst

‘Who saw whom when?’ [rus]
(11) Kto

who.nom
kogda
when

kogo
who.acc

videl?
see.pst

‘Who saw whom when?’ [rus]
2Some literature contends that they are not possible (Stepanov & Stateva, 2006) but the first

author has observed herself producing such constructions, and we have found examples on the web,
such as below:

(i) I
And

kto
who.nom

ty
2sg.nom

dumaesh
think.2sg.pres

budet
be.3sg.fut

tretjim?
third.instr

‘And who do you think will be the third [in the group]?’ [rus] (Galikhin, 2017, loc.246)

3This very common Russian sentence was pointed out to the first author by John F. Bailyn in
personal communication.

160

3 Background

This section briefly reviews the general approach to LDD in HPSG (§3.1); explains
the specifics of the version of HPSG which we use here, paying special attention
to list types which are used for non-local features (§3.2); and concludes with
some characteristics of the Grammar Matrix system which are relevant to the
presentation of our work (§3.3).

3.1 Non-local features and question fronting in HPSG

In GPSG (Gazdar, 1981) and subsequently HPSG (Pollard & Sag, 1994; Ginzburg
& Sag, 2000), the analysis of long distance dependencies (LDD) relies on set-
valued non-local features slash, que, and rel. The slash feature is used to
account for constituents which do not appear in their usual place, and distinct fea-
tures rel and que serve the separate analyses of relative clauses and constituent
questions, respectively. For a fronted constituent question, the headed filler-gap
rule licenses a phrase with two daughters, a head daughter with a nonempty slash
value, and a “filler” daughter that has a nonempty que value and matches an el-
ement of that slash value in its local feature values. The nonempty slash
value is ultimately licensed by an extraction rule.

Bouma et al. (2001) suggested an influential idea of slash amalgamation at
the level of the lexical entry, a mechanism which here we call lexical threading.
A lexical entry combines the non-local features of its arguments; thus, a verb’s
slash is the union of the verb’s subject’s and complements’ slash sets.4 At the
lexical level, the arguments’ slash sets are underspecified, but they are specified
once the arguments have been realized (either as a constituent or as a gap). The
slash set is propagated via the head, without the need to stipulate any additional
constraints at the level of phrase structure rules. What this means in context of
extraction is that the extraction rules do not combine or extend slash sets but
merely specify that a particular set is nonempty (for example, as discussed in §5.1,
the subject extraction rule (26) constrains the subj’s slash list to be nonempty,
by using the gap type (25)).

3.2 DELPH-IN Joint Reference Formalism

DELPH-IN (DEep Linguistic Processing with Hpsg INitiative)5 is an interna-
tional consortium of researchers who are interested in engineering grammars using
HPSG. Furthermore, the DELPH-IN Joint Reference Formalism (JRF; Copestake,
2002a, p.227) is a version of HPSG restricted to rely on only unification as a native
operation, without relational constraints such as list reordering or counting. The

4Bouma et al. (2001) actually use a single deps feature instead of subj and comps, and fur-
thermore deps includes adjuncts, but the decision to use deps is separate from the decision to use
lexical threading, and we will not discuss deps further here.

5http://www.delph-in.net

161

design of the DELPH-IN JRF aims to balance linguistic considerations with engi-
neering ones. On the one hand, it should be possible to implement broad-coverage
precision grammars, and on the other hand, it should be possible to effectively use
such a grammar in practical applications. (For further discussion, see: Bender &
Emerson, 2020, §3.2.)

For the purposes of the non-local features slash, que, and rel, the most
important characteristic of the DELPH-IN JRF is the need to use lists instead
of sets. While set-valued features are often used in HPSG, unification of sets is
not guaranteed to produce a unique result (Pollard & Moshier, 1990; Moshier &
Pollard, 1994). So that unification always produces a unique result, the DELPH-
IN JRF does not allow set-valued features, which means that features like slash
must be list-valued rather than set-valued. A list fixes the order of its elements,
and combining two lists (appending them) must similarly fix the order.

3.2.1 Lists

Lists can be implemented in the DELPH-IN JRF as follows. The type list has two
subtypes nonempty-list and empty-list. The nonempty-list type has two features,
as shown in (12), where first holds the first element of the list (which can be
of any type, hence the most general type top), and rest holds the rest of the list.
This allows a list to be specified recursively, following the rest feature multiple
(0 or more) times. A fully specified list consists of nonempty-list multiple times,
eventually terminating in an empty-list, illustrated in (13) for the list ⟨a,b⟩.

(12)


nonempty-list
FIRST top
REST list




(13)



nonempty-list
FIRST a

REST



nonempty-list
FIRST b
REST empty-list







3.2.2 Difference lists

As mentioned above, the only native operation in the DELPH-IN JRF is unifica-
tion. However, in order to manipulate the slash feature, we would like to be able
to append lists. Because a fully specified list terminates with an empty-list, the list
cannot be extended further. One solution, which DELPH-IN grammars and the
Grammar Matrix in particular have relied on so far, is to use difference lists (for
an exposition, see: Copestake, 2002b, §4.3).67 The basic idea is that, rather than
working with fully specified lists, we can work with underspecified lists which are

6The concept of difference lists dates back to the early history logic programming (Geske &
Goltz, 2007)

7Another solution is to use so-called junk slots (Aït-Kaci, 1984) (for a summary, see: Götz &
Meurers, 1996). However, junk slots require disjunctive type definitions and fully sort-resolved
feature structures, which are not part of the DELPH-IN JRF.

162

easier to append— in particular, lists which end with an underspecified list, rather
than a nonempty-list. We will refer to such a list as a open list, in contrast to a
fully specified closed list.

The diff-list type wraps an open list to make list appends convenient. It has two
features, as shown in (14), where the value of list is intended to be an open list,
and the value of last is intended to be the open end of that list. The definition
in (14) doesn’t enforce the fact that last should point to the end of the list in
list, but for a difference list to be useful, this needs to be true. An example is
given in (15), for a difference list ⟨! a,b !⟩. Note that 1 is of type list.

(14)


diff-list
LIST list
LAST list




(15)



diff-list

LIST




nonempty-list
FIRST a

REST



nonempty-list
FIRST b
REST 1 list







LAST 1




By keeping track of the notional end of the list, using the last feature, it is
possible to append lists, as shown in (16), where the first diff-list is the append of
the following two.
(16)



diff-list
LIST 1

LAST 3






diff-list
LIST 1

LAST 2






diff-list
LIST 2

LAST 3




Difference lists make it possible to append lists, but there is an important
downside, because the notional list is not the same as the value of the list feature.
Notionally, the contents of a difference list start at list, and end at last (15).
However, once a difference list has been appended to, the value of last is the
next list, and so the list actually contains not only the notional list, but also all
lists appended to it.

Because of this, there is an important but awkward division of labour between
a difference list and the value of its list. The elements of the notional list are
to be found in the value of list, but the length of the notional list is implicitly
defined by the value of last. Because the length is only implicitly defined, it is
not directly accessible, which means it is even difficult to check if the notional
list is empty or nonempty. For this reason, Flickinger (2000) constrained slash
lists to be of length of at most 1 (which is sufficient for almost all of English),
and this constraint was inherited by the Grammar Matrix. However, to accom-
modate multiple question fronting, this constraint needs to be taken out. While it
is possible to analyse multiple long-distance dependencies using difference lists

163

(Crysmann, 2015), working with difference lists is error-prone, and so we present
an alternative that makes it easier to implement a grammar and maintain it.

3.2.3 Append lists

Emerson (2017, 2019) proposed append lists8 as an alternative to difference lists,
where there is no discrepancy between the notional list and the value of list.
This makes working with append lists relatively straightforward.9

The append-list type wraps a list, using the list feature. This can be treated
exactly as a normal list, and in particular it can be a closed list (unlike the diff-list
type, where the list must be open to allow appends). The append-list type also
has an append feature, as shown in (17), which can be used to specify that this
append list is the result of appending some other append lists.
(17) 



append-list
LIST 0 list

APPEND
[
list-of-append-lists
APPEND-RESULT 0

]




Append lists are easy to use when writing a grammar, with an example shown
in (18), where the first append list is the result of appending the second and third
append lists. The first append list’s list value is ⟨a,b,c⟩, with these elements
being token-identical to the elements in the second and third lists. In comparison
to (16), a grammarian does not need to worry about linking up the end of one list
with the start of the next.
(18)



append-list

APPEND
⟨
1 , 2

⟩

 1



append-list

LIST
⟨
a , b

⟩

 2



append-list

LIST
⟨
c
⟩



The following two sections can be safely skipped by a reader uninterested in
the technical details of how append lists are implemented.

3.2.3.1 The list-of-append-lists type

Closed lists cannot be directly appended, so the list-of-append-lists type first cre-
ates an open list from each closed list, and then appends the open lists in the same
way as with difference lists. Just as the list type has two subtypes, we have the
subtypes nonempty-list-of-append-lists and empty-list-of-append-lists, with con-
straints as defined in (19)–(20). Each list in a list-of-append-lists is unified with
the type list-with-diff-list, which creates an open list (a diff-list) containing the

8Aguila-Multner & Crysmann (2018) refer to append lists as Emerson-style lists.
9In fact, append lists are a special case of a general procedure for expressing any (potentially

Turing-complete) relational constraint as a type in the DELPH-IN JRF (Emerson, 2019).

164

same elements. The last of each diff-list is identified with the result of append-
ing the remaining lists (compare (19) against the re-entrancy 2 in (16)). This
continues recursively until the end of the list (empty-list-of-append-lists), where
the result is simply an empty list.
(19) 



nonempty-list-of-append-lists

FIRST|LIST




list-with-diff-list

DIFF-LIST



diff-list
LIST 1

LAST 2







REST
[
list-of-append-lists
APPEND-RESULT 2

]

APPEND-RESULT 1




(20) [
empty-list-of-append-lists
APPEND-RESULT empty-list

]

3.2.3.2 The list-with-diff-list type

Finally, the list-with-diff-list type is a subtype of list, which creates a diff-list
containing the same elements. The re-entrancy 1 ensures the new list contains
the same elements, 2 ensures the new list is linked up correctly, 3 propagates the
new open end of the list, and 4 creates the new open end of the list. This is shown
graphically in Figure 1.
(21) 



nonempty-list-with-diff-list
FIRST 1

REST




list-with-diff-list

DIFF-LIST
[LIST 2

LAST 3

]




DIFF-LIST



LIST

[FIRST 1

REST 2

]

LAST 3







(22)



empty-list-with-diff-list

DIFF-LIST
[LIST 4

LAST 4

]




165

ne-lwdl ne-lwdl ne-lwdl e-lwdlREST REST REST

FIRST

FIRST

FIRST

ne-list ne-list ne-list list

REST REST REST

FIR
ST

FIR
ST

FIR
ST

DL|LIST

DL|LIST

DL|LIST

DL|LIST

DL|LAST
DL|LAST

DL|LAST
DL|LAST

Figure 1: Example of creating an open list from a closed list. The closed list is at
the top (black nodes), the open list is at the bottom (pink nodes), and the elements
of the list are in the middle (red nodes). In type names, e and ne stand for empty
and nonempty, and lwdl stands for list-with-diff-list; dl stands for diff-list.

3.3 Grammar Matrix

The Grammar Matrix (Bender et al., 2002, 2010) is a DELPH-IN-based grammar
customization system. This means that the user fills out a web-based question-
naire with typological, lexical, and morphological information, and, based on the
particular combination of such choices, the system applies a programmed cus-
tomization logic to the right set of ‘core’ types10 and outputs an implemented
grammar fragment. Loaded into a parser such as the LKB system (Copestake,
2002b) or ACE (Crysmann & Packard, 2012), the grammars automatically map
sentences to syntactic HPSG and semantic MRS structures.

The analysis presented here is part of the constituent questions library for the
GrammarMatrix (Zamaraeva, forth). As such, we build on the existing analyses—
on the lexical and phrasal types implemented in the Grammar Matrix, including
those for word order, modification, argument extraction and filler-gap construc-
tion, reimplementing them with append lists instead of difference lists. As detailed
in §5, most of the novelty we present here is in the space of adjunct extraction,
along with the lexical threading-free version of the whole system which relies on
append lists instead of difference lists.

Lexical threading was implemented in the Grammar Matrix like in the ERG
10Not to be confused with “core vs. periphery” as in Chomsky 1995. The Matrix core types were

originally distilled from the English Resource Grammar (Flickinger, 2000), as part of Bender et al.
2002.

166

(Flickinger, 2000). Most lexical entries inherit from an appropriate supertype, de-
pending on the length of the arg-st. For example, the Russian verb videl from (4)
would be a subtype of basic-two-arg-lex-item lexical threading supertype (23).
(23) 



basic-two-arg-lex-item

ARG-ST
⟨

NON-LOCAL



SLASH 1

REL 2

QUE 3





,


NON-LOCAL



SLASH 4

REL 5

QUE 6







⟩

SYNSEM|NON-LOCAL




SLASH|APPEND
⟨
1 , 4

⟩

REL|APPEND
⟨
2 , 5

⟩

QUE|APPEND
⟨
3 , 6

⟩







The Grammar Matrix has a regression testing system associated with it so that
any change to the core type hierarchy or to the customization logic is ensured to
not have broken any of the previous analyses (Bender et al., 2007). Pairings of
language specifications and test suites are stored along with the gold semantic rep-
resentations in the MRS formalism. Each specification–test suite pair represents
some language, real or artificial. At the time of writing this paper, there are 499
languages in the regression testing system, 56 of them natural languages. The
size of the test suite ranges from 1 to 6165 sentences, the average being 34. The
Matrix provided us with testing grounds for our analysis, as explained in §6.

To summarize, our analysis (§5) is situated within a framework which both
dictates a number of design decisions (e.g. treating non-local features as lists)
and provides us with means for testing our analysis of question fronting cross-
linguistically and in interaction with other phenomena.

4 Related Work

As explained above, our analysis exists in parallel to analyses of Slavic languages
which use non-DELPH-IN variants of HPSG, like Penn 1998, Przepiórkowski
1998, and Chaves & Paperno 2007, and so cannot be informed by them directly
(e.g. we do not have at our disposal a natively defined shuffle-operator). In terms
of data, we agree with Przepiórkowski (1998), inter alia, that any apparent re-
strictions on the order of extraction should probably not be explained solely on
syntactic grounds (and as such we leave them out of scope in §2).

Several grammars of Slavic languages written in the DELPH-IN JRF exist
(Avgustinova & Zhang, 2009; Osenova, 2010; Fokkens & Avgustinova, 2013) but
none of them cover multiple questions. Osenova 2010 does include an account
of single questions as well as relative clauses. Being a Matrix-based grammar,
Osenova 2010 also ends up relaxing the non-local constraints inherited from the
ERG so as to allow wh-words in non-fronted positions, as do we in §5.

Sag et al. (2003, p.452) describe multiple extraction as part of an analysis
of English topicalization. To our knowledge, multiple extraction as suggested
by Sag et al. (2003) was implemented in the DELPH-IN JRF once before, by

167

Crysmann (2015) for resumptive pronouns in Hausa. We implement Sag et al.’s
(2003) analysis for interrogatives and make it available for automated Grammar
Matrix-based implementation after testing it for cross-linguistic applicability.

Append lists are a relatively new concept, and our work is one of the first
examples of how they can be used in DELPH-IN grammars. They were first used
by Aguila-Multner & Crysmann (2018) for gender resolution in French.

5 Analysis

We would ultimately like to analyse the data in §2 including the flexible order of
extracted elements (5), (10)–(11) using recursive application of one filler-gap rule.
Append lists, as presented in §3.2.3, allow us to manipulate the slash, que, and
rel features for this purpose.

We offer two alternative analyses, one with the lexical threading assumption
and one without. Each option has its advantages and disadvantages, and while for
the purposes of the Grammar Matrix we favor the second option, the first option
could also serve as a basis for future work.

Lexical threading makes possible an elegant analysis of easy-adjectives (Sag
et al. 2003, p.439, Flickinger 2000), which would otherwise require additional
phrasal rules; the analysis of morphological marking of questions is also easier.11
However, the combination of append-list and lexical threading makes the analysis
of VP coordination more problematic.12

On the other hand, without lexical threading, we give a simple account of mul-
tiple extraction of arguments and adjuncts in the context of flexible word order and
have no issues with coordination while also gaining in parsing speed, as multiple
adjunct extraction rules are costly for the parser performance.13

Under both analyses, at the level of the filler-gap phrase, what is required is
simply restating as (24) the version suggested by Sag et al. 2003, (p.448), except
in terms of append lists (so, the value of slash has a feature list).

11Assuming lexical threading, one can simply state that a lexical rule applies to e.g. a que-
nonempty verb, to distinguish lexical rules which participate in an interrogative paradigm. This is
not possible without lexical threading because one needs to explicitly state non-local constraints on
the verb’s various arguments. See also: Zamaraeva (forth).

12With lexical threading, both the “input” and “output” of the append operation are accessible in
the feature structure, e.g. by looking at a VP’s slash and subj|...slash. However, if adjuncts are
not included in lexical threading, then there can be any number of append operations between the
slash and subj|...slash. Even if two coordinated VPs have compatible values for slash|list
and subj|...slash|list, they may have incompatible values for slash and subj|...slash, which
means that more care is required in writing coordination rules. This illustrates that, unlike with
“true” relational constraints, unifying a feature structure with one of the types introduced in §3.2.3
permanently modifies that structure.

13On the Russian test described in §6 and with the LKB parser run on a MacBook Pro 2015
laptop with 16GB memory and 3.1GHz Intel Core i7 processor, Analysis 1 speed is 1.47 seconds
per sentence on average; Analysis 2 speed is 0.39 seconds.

168

(24) 


filler-gap-phrase
SLASH 1

ARGS
⟨

2 ,

SLASH|LIST

[FIRST 2

REST 1

]

⟩




The two analyses diverge at the level of extraction rules.

5.1 Analysis 1: With lexical threading

At the level of the argument extraction rules, assuming we use lexical threading,
we can use the existing Grammar Matrix phrasal types carried over from the En-
glish Resource Grammar (Flickinger, 2000; Bender et al., 2002), except we use
append-lists instead of diff-lists and we remove all constraints on the length of
the non-local lists. Note how (26)–(27) indeed do not even mention the non-
local features because the slash value will be handled by the lexical threading
mechanism (23) and the type gap (25).
(25) 



gap

SYNSEM


LOCAL 1

NON-LOCAL|SLASH|LIST
⟨
1

⟩






(26)



extracted-subj-phrase

SYNSEM
[
LOCAL|CAT|VAL|SUBJ ⟨⟩

]

HEAD-DTR|SYNSEM
[
LOCAL|CAT|VAL|SUBJ

⟨
gap

⟩]




(27)



extracted-comp-phrase

SYNSEM
[
LOCAL|CAT|VAL|COMPS 1

]

HEAD-DTR|SYNSEM

LOCAL|CAT|VAL|COMPS

[FIRST gap
REST 1

]





The main novelty we present here pertains to adjunct extraction in the space of
multiple question fronting. We introduce a small hierarchy as shown in Fig. 2 of
adjunct extraction rules which allows extracting exactly one adjunct either before
or after the arguments, to account for (5) and (10).

169

head-mod-phrase

extracted-adj-phrase

extracted-adj-first extracted-adj-last

Figure 2: The adjunct extraction rules hierarchy

(28) 


extracted-adj-last

SS




LOC
[CAT|HEAD 1

CONT|HOOK 2

]

NLOC|SLASH|APP
⟨

3 ,



LIST

⟨


CAT|HEAD|MOD

⟨

LOC



intersective-mod
CAT|HEAD 1

CONT|HOOK 2







⟩⟩






⟩

MODIFIED hasmod




HDR|SS




LOC
[CAT|HEAD 1

CONT|HOOK 2

]

NLOC|SLASH 3

MODIFIED notmod







Example (28)14 shows the rule that is used to extract an adjunct after any
arguments (accounting for (5)). Following Flickinger (2000), we block multiple
adjunct extraction (7) by the modified feature and a hierarchy of mutually ex-
clusive types (e.g. hasmod vs. notmod) appropriate for it.15 Because slash is
of type append-list, there are no issues with placing the extracted adjunct at the
specified position on the mother’s slash. This works under the lexical threading
analysis where the order of the arguments put on the slash list is determined at
the level of the lexical entry, even before any arguments were actually extracted,
but any extracted adjuncts have to be inserted at some specific position (see §3.1).

5.2 Analysis 2: No lexical threading

Without lexical threading, additional phrase structure rules may be required for the
English easy-adjectives, and modeling interrogative morphology is less straight-
forward. However, the analysis of extraction becomes simpler, as we may use (28)
as the sole adjunct extraction rule. In fact, all extraction rules: subject, comple-
ment, and adjunct, append the gap element to the existing slash list of the head
daughter. Without lexical threading, the slash list can actually be constructed

14Abbreviations: SS: SYNSEM, LOC: LOCAL; NLOC: NON-LOCAL; APP: APPEND; HDR:
HEAD-DTR

15Removing the modified constraint would allow both (7) and (8), and then the limit on how
many adjuncts can be extracted would have to be put either formally or through constraints on the
parsing algorithm (the latter could in principle be seen as a way of modeling processing constraints).

170

Sfiller-gap[
SLASH ⟨⟩

]

3 ADV

kogda
‘when’

Sfiller-gap[
SLASH

⟨
3

⟩]

2 NP

kto
‘who’

Sfiller-gap[
SLASH

⟨
2 , 3

⟩]

1 NP

kogo
‘whom’

Sadj-extr[
SLASH

⟨
1 , 2 , 3

⟩]

Ssubj-extr[
SLASH

⟨
1 , 2

⟩]

VPcomp-extr[
SLASH

⟨
1

⟩]

V
[
SLASH ⟨⟩

]

videl
‘saw’

(a) The extracted adjunct is in front of the
extracted arguments, as in example (5).

Sfiller-gap[
SLASH ⟨⟩

]

3 NP

kto
‘who’

Sfiller-gap[
SLASH

⟨
3

⟩]

2 ADV

kogda
‘when’

Sfiller-gap[
SLASH

⟨
2 , 3

⟩]

1 NP

kogo
‘whom’

Ssubj-extr[
SLASH

⟨
1 , 2 , 3

⟩]

Sadj-extr[
SLASH

⟨
1 , 2

⟩]

VPcomp-extr[
SLASH

⟨
1

⟩]

V
[
SLASH ⟨⟩

]

videl
‘saw’

(b) The extracted adjunct is between the ex-
tracted arguments, as in example (11).

Figure 3: Analysis 2, for extracted adjuncts and arguments in Russian.

based on the order of the application of extraction rules. In particular, compare
Fig. 3a to Fig. 3b, for sentences (5) and (11). It is remarkably easy under Analysis
2 to have an extracted adjunct intervene between the two extracted arguments.
With lexical threading, we would need to complicate Analysis 1 to license (11)
with additional extraction rules to insert an element into the middle of the list.

Under Analysis 2, we can no longer reuse the Grammar Matrix core as it
was originally designed (but we expect the revisions to facilitate future Matrix
development). We replace lexical supertypes like (23) by (29):
(29) 



non-local-none-lex-item

SYNSEM|NON-LOCAL



SLASH|LIST ⟨⟩
REL|LIST ⟨⟩
QUE|LIST ⟨⟩







171

The supertype (29) states that all non-local features are empty and is used for
most lexical entries. The phrasal types such as head-subject and head-complement
no longer rely on lexical threading and need to explicitly append the non-local
features of the daughters. We posit the supertypes (30)–(31) and have most phrasal
rules inherit from one of them. Of course, extraction rules and the filler-gap rule
do not inherit from these types; instead they either append an item to the existing
slash list (28), (32)–(33) or subtract an item from it (24).
(30) 



binary-non-local-phrase

ARGS
⟨

SS|NLOC



SLASH 1

REL 2

QUE 3





,


SS|NLOC



SLASH 4

REL 5

QUE 6







⟩

SS|NLOC




SLASH|APPEND
⟨
1 , 4

⟩

REL|APPEND
⟨
2 , 5

⟩

QUE|APPEND
⟨
3 , 6

⟩







(31)



unary-non-local-phrase

DTR|SYNSEM|NON-LOCAL



SLASH 1

REL 2

QUE 3




SYNSEM|NON-LOCAL



SLASH 1

REL 2

QUE 3







(32) 


extracted-subj-phrase

SYNSEM




LOCAL|CAT|VAL|SUBJ ⟨⟩

NON-LOCAL|SLASH|APPEND
⟨

0 ,
[
LIST

⟨
1

⟩]⟩



HEAD-DTR|SYNSEM



LOCAL|CAT|VAL|SUBJ

⟨[
gap
LOCAL 1

]⟩

NON-LOCAL|SLASH 0







(33) 


extracted-comp-phrase

SYNSEM




LOCAL|CAT|VAL|COMPS 0

NON-LOCAL|SLASH|APPEND
⟨

1 ,
[
LIST

⟨
2

⟩]⟩



HEAD-DTR|SYNSEM




LOCAL|CAT|VAL|COMPS



FIRST

[
gap
LOCAL 2

]

REST 0




NON-LOCAL|SLASH 1







172

6 Testing

Analysis 2 is integrated in the Grammar Matrix and as such is in principle tested
by all of the regression tests that are currently there.16 This means in particu-
lar that any new types (28) or changes to any old types (24) must not result in
any undesirable changes with respect to all the previous analyses, and the system
still produces correctly behaving grammars for all previously analysed languages.
There are currently 499 tests in the Grammar Matrix (including the Russian test
discussed here).17 Some of them rely on analyses actively involving non-local
features, particularly the 44 information structure typology tests added by Song
(2014). We ensure that integrating our analysis of question fronting into the sys-
tem does not negatively affect any of the existing analyses; all of the tests pass.
Other tests do not always target non-local features, in which case they “only”
test that the new analyses presented here do not interfere with other analyses in
unexpected ways—a crucial methodological point, in our view.

The constituent questions Matrix library (Zamaraeva, forth) adds 26 test suites,
5 of them for natural languages.18 The results for three of them are shown in Ta-
ble 1.19 Russian has multiple fronting while English has strictly single fronting,
(so for English, the length of slash in the filler-gap rule is restricted in the cus-
tomization stage). Japanese is an in situ language and in that case we test that our
extraction and filler-gap rules do not conflict with the in situ analysis.
Language Family Gram./ungram. cov% overgen% avg. ambig wh-strategy

Russian Indo-European 186/87 78.5 6.9 1.76 Multiple fronting
English Indo-European 27/23 100 0 1.11 Single fronting
Japanese Japonic 7/3 100 0 1.14 In situ

Table 1: Results for languages the analyses for which rely on slash

The Russian test suite includes not only various patterns of constituent and
polar questions, including embedded questions and long distance dependencies,
but also simple and complex propositions. The lack of coverage is primarily due

16Analysis 1 was also tested and deemed less preferable for the Grammar Matrix, though it could
be preferable for e.g. a separate grammar of English or a language relying on complex morphology
for interrogative marking, such as Yukaghir (Maslova, 2003, p.152). Under Analysis 1, the results
are the same for English and Japanese as in Table 1, but for Russian the coverage is smaller (78.0%)
because of the VP coordination issue mentioned in §5 and because sentences like (11) are not
covered; the average number of analyses per sentence is larger (2.03) due to the multiple adjunct
extraction rules which may apply spuriously, and the overgeneration is the same.

17The code with the complete analysis, all the test suites, and the testing software can be down-
loaded from: https://github.com/delph-in/matrix/releases/tag/HPSG2020-Zamaraeva-Emerson.

18More tests for natural languages will be added in the final evaluation stage of Zamaraeva forth.
19Table legend. Gram./ungram.: The number of grammatical and ungrammatical items in the

test suite; cov%: The percentage of correctly parsed grammatical sentences; overgen%: The per-
centage of admitted ungrammatical sentences; avg. ambig.: Average number of trees per sentence
(ambiguity can be both meaningful and spurious).

173

to interacting phenomena discussed in detail in Zamaraeva forth. The fact that
we analysed question fronting as truly optional, allowing wh- words in declarative
rules such as adjunct-head to accommodate wh-words in positions like in (9),
accounts for most of the spurious ambiguity and for some of the overgeneration,
including sentences like (7). This points us in the direction of reanalysing optional
fronting in terms of information structure in the future, as discussed briefly below.

7 Future work

Easy modeling of flexible order in multiple extraction allows us to extend the ex-
isting analyses of information structure (Song, 2014) to model optional question
fronting (9). Instead of allowing QUE-nonempty elements (wh-words) in declara-
tive rules such as subject-head or adjunct-head, we can extract non-wh-arguments
and then utilize topicalization-type filler-gap rules in the same derivation with the
wh-question phrase.20 This way background information (the personal pronoun
in (9)) or contrastive topic or focus may appear in the front of the wh-word but
without spurious derivations which arise from allowing QUE-nonempty elements
in declarative rules and require additional features to avoid them. Such an analysis
will require multiple additional filler-gap constructions, head initial and head final,
to account for the plethora of possible information structures but we do not expect
it to complicate the wh-fronting analysis which we presented here.

8 Conclusion

We showed that multiple extraction and fronting can be straightforwardly imple-
mented in the DELPH-IN version of HPSG, including with flexible order, allow-
ing us to account for Russian wh-questions. Unification remains the only natively
defined operation under this analysis, and the new type append-list allows for eas-
ier grammar writing (compared to the previous practice of using difference lists).
We test the analysis cross-linguistically using the Grammar Matrix framework and
conclude that while it is possible to implement multiple extraction and fronting
under the assumption that lexical entries amalgamate their arguments’ non-local
features (lexical threading), for the purposes of the multilingual Grammar Matrix
project, we prefer an analysis which rejects lexical threading in favor of more flex-
ibility in constructing slash lists. Information structure in clauses which appear
to exhibit optional question fronting is one area where future work could focus.

20In the Minimalist tradition, it has long been suggested that examples like (9) be analysed as
multiple movement (Bailyn, 2005).

174

Acknowledgments

Wewould like to thank EmilyM. Bender, Woodley Packard, and other participants
of 2017–2020 DELPH-IN summits, as well as Frank Richter, the attendees of the
HPSG-2020 conference, and our anonymous reviewer, for useful discussion.

References

Aguila-Multner, Gabriel & Berthold Crysmann. 2018. Feature resolution by lists:
The case of French coordination. In Annie Foret, Greg Kobele & Sylvain Pogo-
dalla (eds.), Formal Grammar. 23rd International Conference Lecture Notes in
Computer Science, 1–15. Heidelberg: Springer.

Aït-Kaci, Hassan. 1984. A lattice-theoretic approach to computation based on
a calculus of partially-ordered type structures (property inheritance, semantic
nets, graph unification): University of Pennsylvania dissertation.

Avgustinova, Tania & Yi Zhang. 2009. Exploiting the Russian National Corpus
in the development of a Russian Resource Grammar. In Proceedings of the
workshop on adaptation of language resources and technology to new domains,
1–11. Association for Computational Linguistics.

Bailyn, John Frederick. 2005. Against the scrambling anti-movement movement.
In Formal approaches to Slavic linguistics, Citeseer.

Bender, Emily M., Scott Drellishak, Antske Fokkens, Laurie Poulson & Safiyyah
Saleem. 2010. Grammar customization. Research on Language & Computation
8. 1–50.

Bender, Emily M. & Guy Emerson. 2020. Computational linguistics and grammar
engineering. In Stefan Müller, Anne Abeillé, Robert D. Borsley & Jean-Pierre
Koenig (eds.), Head-Driven Phrase Structure Grammar: The handbook, https:
//hpsg.hu-berlin.de/Projects/HPSG-handbook/PDFs/cl.pdf.

Bender, Emily M. Dan Flickinger & Stephan Oepen. 2002. The Grammar Matrix:
An open-source starter-kit for the rapid development of cross-linguistically con-
sistent broad-coverage precision grammars. In John Carroll, Nelleke Oostdijk &
Richard Sutcliffe (eds.), Proceedings of the Workshop on grammar engineering
and evaluation at the 19th International Conference on Computational Linguis-
tics, 8–14. Taipei, Taiwan.

Bender, Emily M. Dan Flickinger & Stephan Oepen. 2008. Grammar engineering
for linguistic hypothesis testing. In Proceedings of the texas linguistics society
x conference: Computational linguistics for less-studied languages, 16–36.

Bender, Emily M, Laurie Poulson, Scott Drellishak & Chris Evans. 2007. Valida-
tion and regression testing for a cross-linguistic grammar resource. In Acl 2007
workshop on deep linguistic processing, 136–143.

Bierwisch, Manfred. 1963. Grammatik des deutschen verbs. Akademie Verlag.
Bouma, Gosse, Robert Malouf & Ivan A. Sag. 2001. Satisfying constraints on
extraction and adjunction. Natural Language & Linguistic Theory 19(1). 1–65.

175

Chaves, Rui P & Denis Paperno. 2007. On the Russian hybrid coordination con-
struction. In The proceedings of the 14th international conference on head-
driven phrase structure grammar, 46–64.

Chomsky, N. 1995. The Minimalist program. Current studies in linguistics 28.
Copestake, Ann. 2002a. Definitions of typed feature structures. In Stephan Oepen,
Dan Flickinger, Jun-ichi Tsujii & Hans Uszkoreit (eds.), Collaborative language
engineering, 227–230. Stanford, CA: CSLI Publications.

Copestake, Ann. 2002b. Implementing typed feature structure grammars, vol. 110.
CSLI publications Stanford.

Copestake, Ann, Dan Flickinger, Carl Pollard & Ivan A. Sag. 2005. Minimal
recursion semantics: An introduction. Research on language and computation
3(2-3). 281–332.

Crysmann, Berthold. 2015. Resumption and extraction in an implemented HPSG
grammar of Hausa. In Proceedings of the grammar engineering across frame-
works (geaf) 2015 workshop, 65–72.

Crysmann, Berthold & Woodley Packard. 2012. Towards efficient HPSG gener-
ation for German, a non-configurational language. In Proceedings of the 24th
International Conference on Computational Linguistics, 695–710.

Emerson, Guy. 2017. (Diff)list appends in TDL. Presented at the 13th DELPH-IN
summit, Oslo, Norway. http://www.delph-in.net/2017/append.pdf.

Emerson, Guy. 2019. Wrapper types: Relational constraints without relational
constraints. Presented at the 15th DELPH-IN summit, Cambridge, UK. http:
//users.sussex.ac.uk/~johnca/summit-2019/wrapper-types.pdf.

Engelkamp, Judith, Gregor Erbach & Hans Uszkoreit. 1992. Handling linear
precedence constraints by unification. In Proceedings of the 30th annual meeting
on association for computational linguistics, 201–208. ACL.

Flickinger, Dan. 2000. On building a more effcient grammar by exploiting types.
Natural Language Engineering 6(01). 15–28.

Fokkens, Antske Sibelle. 2014. Enhancing empirical research for linguistically
motivated precision grammars: Department of Computational Linguistics, Uni-
versität des Saarlandes dissertation.

Fokkens, Antske Sibelle & Tania Avgustinova. 2013. SlaviCLIMB: Combining
expertise for Slavic grammar development using a metagrammar. In Workshop
on high-level methodologies for grammar engineering, 87–92.

Galikhin, Sergei. 2017. Povarennaya kniga Mardпaila. Moscow, Russia: LitRes.
Gazdar, Gerald. 1981. Unbounded dependencies and coordinate structure. In The
formal complexity of natural language, 183–226. Springer.

Geske, Ulrich & Hans-Joachim Goltz. 2007. A guide for manual construction
of difference-list procedures. In Applications of declarative programming and
knowledge management, 1–20. Springer.

Ginzburg, Jonathan & Ivan A. Sag. 2000. Interrogative investigations. Stanford:
CSLI publications.

Götz, Thilo & Walt Detmar Meurers. 1996. The importance of being lazy – Using
lazy evaluation to process queries to HPSG grammars. In Actes de la conférence

176

traitement automatique de la langue naturelle (taln), .
Idiatov, Dmitry. 2007. A typology of non-selective interrogative pronominals: Uni-
versity of Antwerp dissertation.

Kathol, Andreas. 1995. Linearization-based German syntax: The Ohio State Uni-
versity dissertation.

Maslova, Elena. 2003. A grammar of Kolyma Yukaghir, vol. 27. Walter de Gruyter.
Moshier, M. Andrew & Carl J Pollard. 1994. The domain of set-valued feature
structures. Linguistics and Philosophy 17(6). 607–631.

Müller, Stefan. 1999. Deutsche Syntax deklarativ. Head-Driven Phrase Structure
Grammar für das Deutsche 394.

Müller, Stefan. 2015. The CoreGram project: Theoretical linguistics, theory de-
velopment and verification. Journal of Language Modelling 3(1). 21–86.

Oborin, L. 1987. Timur i ego komanda, kvartiry Dostoyevskogo i
antologiya polskoy poezii. Found via Russian National Corpus.
https://gorky.media/context/timur-i-ego-komanda-kvartiry-dostoevskogo-
i-antologiya-polskoj-detskoj-poezii/.

Osenova, Petya. 2010. Bulgarian Resource Grammar–Efficient and Realistic.
Tech. rep. Stanford University, CSLI.

Penn, Gerald. 1998. Linearization and wh-extraction in HPSG: Evidence from
Serbo-Croatian. In In: Slavic in HPSG, Citeseer.

Pollard, Carl & Ivan A. Sag. 1994. Head-Driven Phrase Structure Grammar.
University of Chicago Press.

Pollard, Carl J. & M. Drew Moshier. 1990. Unifying partial descriptions of sets.
In Philip P. Hanson (ed.), Information, language, and cognition (Vancouver
Studies in Cognitive Science 1), 285–322. University of British Columbia Press.

Przepiórkowski, Adam. 1998. On complements and adjuncts in Polish. In Slavic
in HPSG, .

Reape, Mike. 1994. A formal theory of word order: A case study inWest Germanic:
University of Edinburgh dissertation.

Sag, Ivan A., Thomas Wasow, Emily M. Bender & Ivan A. Sag. 2003. Syntactic
theory: A formal introduction. CSLI.

Song, Sanghoun. 2014. A grammar library for information structure: University
of Washington dissertation.

Stepanov, Arthur & Penka Stateva. 2006. Successive cyclicity as residual wh-
scope marking. Lingua 116(12). 2107–2153.

Zamaraeva, Olga. forth. A cross-linguistic analysis of constituent questions for the
Grammar Matrix: University of Washington dissertation.

177

